Showing 19 open source projects for "pixels."

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 1
    canvas-constructor

    canvas-constructor

    An ES6 utility for canvas with built-in functions and chained methods

    An ES6 utility for canvas with built-in functions and chained methods. Alternatively, you can import canvas-constructor/browser. That will create a canvas with size of 300 pixels width, 300 pixels height. Set the color to #AEFD54. Draw a rectangle with the previous color, covering all the pixels from (5, 5) to (290 + 5, 290 + 5) Set the color to #FFAE23. Set the font size to 28 pixels with font Impact. Write the text 'Hello World!' in the position (130, 150) Return a buffer.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    pixelmatch

    pixelmatch

    The smallest, simplest JavaScript pixel-level image comparison library

    The smallest, simplest and fastest JavaScript pixel-level image comparison library, originally created to compare screenshots in tests. Features accurate anti-aliased pixels detection and perceptual color difference metrics. Inspired by Resemble.js and Blink-diff. Unlike these libraries, pixelmatch is around 150 lines of code, has no dependencies, and works on raw typed arrays of image data, so it's blazing fast and can be used in any environment (Node or browsers). Compares two images, writes the output diff and returns the number of mismatched pixels.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well with simple linear probes and minimal fine-tuning. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Color Thief

    Color Thief

    Grab the color palette from an image using just Javascript

    ...When run in Node, this argument expects a path to the image. quality is an optional argument that must be an Integer of value 1 or greater, and defaults to 10. The number determines how many pixels are skipped before the next one is sampled. We rarely need to sample every single pixel in the image to get good results. The bigger the number, the faster a value will be returned. Gets a palette from the image by clustering similar colors. The palette is returned as an array containing colors, each color itself an array of three integers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Nonprofit Budgeting Software Icon
    Nonprofit Budgeting Software

    Martus Solutions provides seamless budgeting, reporting, and forecasting tools that integrate with accounting systems for real-time financial insights

    Martus' collaborative and easy-to-use budgeting and reporting platform will save you hundreds of hours each year. It's designed to make the entire budgeting process easier and create unlimited financial transparency.
    Learn More
  • 5
    The Arcade Learning Environment

    The Arcade Learning Environment

    The Arcade Learning Environment (ALE) -- a platform for AI research

    ...This environment suite has been central to many RL breakthroughs, including value-based agents, deep Q-nets, and general-agent benchmarking, because the Atari games span many genres and present diverse learning challenges (pixels, actions, delayed rewards). The repository supports multi‐platform build (Linux, macOS, Windows), vectorized execution of games, Python bindings, Gymnasium registration, and a large set of game ROMs bundled for convenience. While its rendering may not match modern 3D environments, its importance lies in reproducibility, benchmarking, and the fact that many RL baselines and papers reference ALE.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Qwen-VL

    Qwen-VL

    Chat & pretrained large vision language model

    Qwen-VL is Alibaba Cloud’s vision-language large model family, designed to integrate visual and linguistic modalities. It accepts image inputs (with optional bounding boxes) and text, and produces text (and sometimes bounding boxes) as output. The model variants (VL-Plus, VL-Max, etc.) have been upgraded for better visual reasoning, text recognition from images, fine-grained understanding, and support for high image resolutions / extreme aspect ratios. Qwen-VL supports multilingual inputs...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The architecture is designed to scale: spatiotemporal ViT backbones, flexible masking schedules, and efficient sampling let it train on long clips while remaining stable. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    ...Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major challenge in surveillance applications. Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    cleanvideo-cli

    cleanvideo-cli

    CLI tool for removing watermarks from AI-generated videos using frame-

    cleanvideo-cli is a command-line tool designed to remove visible watermarks from AI-generated videos. It works by analyzing video frames and reconstructing the underlying pixels in watermark regions, without cropping or blurring the original content. This project is intended for developers, researchers, and creators who need a lightweight utility for cleaning preview or draft videos before further processing. Note: This tool does not bypass platform restrictions and should be used only on content you own or have the rights to use.
    Downloads: 2 This Week
    Last Update:
    See Project
  • HOA Software Icon
    HOA Software

    Smarter Community Management Starts Here

    Simplify HOA management with software that handles everything from financials to communication.
    Learn More
  • 10
    Aphantasia

    Aphantasia

    CLIP + FFT/DWT/RGB = text to image/video

    ...Generating massive detailed textures, a la deepdream, fullHD/4K resolutions and above, various CLIP models (including multi-language from SBERT), continuous mode to process phrase lists (e.g. illustrating lyrics), pan/zoom motion with smooth interpolation. Direct RGB pixels optimization (very stable) depth-based 3D look (courtesy of deKxi, based on AdaBins), complex queries: text and/or image as main prompts, separate text prompts for style and to subtract (avoid) topics. Starting/resuming process from saved parameters or from an image.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    FLUX.1 Krea

    FLUX.1 Krea

    Powerful open source image generation model

    ...It is a rectified-flow model distilled from the original Krea 1, providing enhanced sampling efficiency through classifier-free guidance distillation. The model supports generation at resolutions between 1024 and 1280 pixels with recommended inference steps between 28 and 32 for optimal balance of speed and quality. FLUX.1 Krea is fully compatible with the FLUX.1 architecture, making it easy to integrate into existing workflows and pipelines. The repository offers easy-to-use inference scripts and a Jupyter Notebook example to facilitate quick experimentation and adoption. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    DensePose

    DensePose

    A real-time approach for mapping all human pixels of 2D RGB images

    ...DensePose is widely used in augmented reality, motion capture, virtual try-on, and visual effects applications because it enables real-time 3D human mapping from 2D inputs. The model architecture builds on Mask R-CNN, using additional regression heads to predict UV coordinates that map image pixels to 3D surfaces.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    Image GPT

    Image GPT

    Large-scale autoregressive pixel model for image generation by OpenAI

    Image-GPT is the official research code and models from OpenAI’s paper Generative Pretraining from Pixels. The project adapts GPT-2 to the image domain, showing that the same transformer architecture can model sequences of pixels without altering its fundamental structure. It provides scripts to download pretrained checkpoints of different model sizes (small, medium, large) trained on large-scale datasets and includes utilities for handling color quantization with a 9-bit palette. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 14
    PixelCNN

    PixelCNN

    Code for the paper "PixelCNN++: A PixelCNN Implementation..."

    PixelCNN is the official implementation from OpenAI of the autoregressive generative model described in the paper Conditional Image Generation with PixelCNN Decoders. It provides code for training and evaluating PixelCNN models on image datasets, focusing on conditional image modeling where pixels are generated sequentially based on the values of previously generated pixels. The repository demonstrates how to apply masked convolutions to enforce autoregressive dependencies and achieve tractable likelihood-based training. It also includes scripts for reproducing key experimental results from the paper, such as conditional sampling on datasets like CIFAR-10. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    imgaug

    imgaug

    Image augmentation for machine learning experiments

    ...Affine transformations, perspective transformations, contrast changes, gaussian noise, dropout of regions, hue/saturation changes, cropping/padding, blurring, etc. Rotate image and segmentation map on it by the same value sampled. Convert keypoints to distance maps, extract pixels within bounding boxes from images, clip polygon to the image plane, etc. Scale segmentation maps, average/max pool of images/maps, pad images to aspect ratios (e.g. to square them). Draw heatmaps, segmentation maps, keypoints, bounding boxes, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    PyTorch pretrained BigGAN

    PyTorch pretrained BigGAN

    PyTorch implementation of BigGAN with pretrained weights

    An op-for-op PyTorch reimplementation of DeepMind's BigGAN model with the pre-trained weights from DeepMind. This repository contains an op-for-op PyTorch reimplementation of DeepMind's BigGAN that was released with the paper Large Scale GAN Training for High Fidelity Natural Image Synthesis. This PyTorch implementation of BigGAN is provided with the pretrained 128x128, 256x256 and 512x512 models by DeepMind. We also provide the scripts used to download and convert these models from the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Universe

    Universe

    Software for measuring and training an AI's general intelligence

    ...It does this by packaging the program into a Docker container, and presenting the AI with the same interface a human uses: sending keyboard and mouse events, and receiving screen pixels. Our initial release contains over 1,000 environments in which an AI agent can take actions and gather observations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    tracking.js

    tracking.js

    A modern approach for Computer Vision on the web

    The tracking.js library brings different computer vision algorithms and techniques into the browser environment. By using modern HTML5 specifications, we enable you to do real-time color tracking, face detection and much more, all that with a lightweight core (~7 KB) and intuitive interface. To get started, download the project. This project includes all of the tracking.js examples, source code dependencies you'll need to get started. Unzip the project somewhere on your local drive. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    BayesianCortex

    BayesianCortex

    simple algorithm for a realtime interactive visual cortex for painting

    A paint program where the canvas is the visual cortex of a simple kind of artificial intelligence. You paint with the mouse into its dreams and it responds by changing what you painted gradually. There will also be an API for using it with other programs as a general high-dimensional space. Each pixel's brightness is its own dimension. Bayesian nodes have exactly 3 childs because that is all thats needed to do NAND in a fuzzy way as Bayes' Rule which is NAND at certain extremes. NAND can be...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next