Showing 36 open source projects for "number prediction algorithm"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    ...It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark tree models. To understand how a single feature effects the output of the model we can plot the SHAP value of that feature vs. the value of the feature for all the examples in a dataset. Since SHAP values represent a feature's responsibility for a change in the model output, the plot below represents the change in predicted house price as RM (the average number of rooms per house in an area) changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TextGen

    TextGen

    textgen, Text Generation models

    ...This project implements the training and prediction of Seq2Seq, ConvSeq2Seq, and BART models based on PyTorch, which can be used for text generation tasks such as text translation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ...By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    ncnn

    ncnn

    High-performance neural network inference framework for mobile

    ...It brings artificial intelligence right at your fingertips with no third-party dependencies, and speeds faster than all other known open source frameworks for mobile phone cpu. ncnn allows developers to easily deploy deep learning algorithm models to the mobile platform and create intelligent APPs. It is cross-platform and supports most commonly used CNN networks, including Classical CNN (VGG AlexNet GoogleNet Inception), Face Detection (MTCNN RetinaFace), Segmentation (FCN PSPNet UNet YOLACT), and more. ncnn is currently being used in a number of Tencent applications, namely: QQ, Qzone, WeChat, and Pitu.
    Downloads: 23 This Week
    Last Update:
    See Project
  • 6
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Hack Instagram Account with AI

    Hack Instagram Account with AI

    AI-driven Instagram account security hacking

    Hack Instagram Password - AI-Powered Tool This application was made using the API of PASS REVELATOR, for more information about Instagram hacking account and security, please visit their website: https://www.passwordrevelator.net/en/passdecryptor Advanced machine learning tool for Instagram password security assessment. Features AI-driven brute force attacks, pattern recognition, and neural network prediction. KEY FEATURES: • AI-Powered Password Generation - Machine learning...
    Downloads: 8 This Week
    Last Update:
    See Project
  • Instant Remote Support Software. Unattended Remote Access Software. Icon
    Instant Remote Support Software. Unattended Remote Access Software.

    Zoho Assist, your all-in-one remote access solution, helps you to access and manage remote devices.

    Zoho Assist is cloud-based remote support and remote access software that helps you support customers from a distance through web-based, on-demand remote support sessions. Set up unattended remote access and manage remote PCs, laptops, mobile devices, and servers effortlessly. A few seconds is all you need to establish secure connections to offer your customers remote support solutions.
    Learn More
  • 10
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    ModelFox

    ModelFox

    ModelFox makes it easy to train, deploy, and monitor ML models

    ModelFox makes it easy to train, deploy, and monitor machine learning models. Train a model from a CSV file on the command line. Make predictions from Elixir, Go, JavaScript, PHP, Python, Ruby, or Rust. Learn about your models and monitor them in production from your browser. ModelFox makes it easy to train, deploy, and monitor machine learning models. You can install the modelfox CLI by either downloading the binary from the latest GitHub release or by building from source. Train a machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12

    LaPath

    Learning Automata algorithm for the shortest path problem.

    The shortest path problem is solved by many methods. Heuristics offer lower complexity in expense of accuracy. There are many use cases where the lower accuracy is acceptable in return of lower consumption of computing resources. Learning Automata (LA) are adaptive mechanisms requiring feedback from the executing environment to converge to certain states. In the context of network routing, LA residing at intermediate nodes along a path, exploit feedback from the destination node for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DETR

    DETR

    End-to-end object detection with transformers

    ...We replace the full complex hand-crafted object detection pipeline with a Transformer, and match Faster R-CNN with a ResNet-50, obtaining 42 AP on COCO using half the computation power (FLOPs) and the same number of parameters. Inference in 50 lines of PyTorch. What it is. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    CCZero (中国象棋Zero)

    CCZero (中国象棋Zero)

    Implement AlphaZero/AlphaGo Zero methods on Chinese chess

    ChineseChess-AlphaZero is a project that implements the AlphaZero algorithm for the game of Chinese Chess (Xiangqi). It adapts DeepMind’s AlphaZero method—combining neural networks and Monte Carlo Tree Search (MCTS)—to learn and play Chinese Chess without prior human data. The system includes self-play, training, and evaluation pipelines tailored to Xiangqi's unique game mechanics.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Electronic Circuit Optimization

    Electronic Circuit Optimization

    Optimer: a SPICE base electrical/ electronic circuit optimization tool

    This project is dedicated to the optimization of (any) electrical and electronic circuits and components using evolutionary and heuristic algorithms incorporated with SPICE simulators (such as HSPICE, ngSPICE, etc.). We provide Optimer, which is a user graphical interface for circuit design and optimization. Website: https://www.circuitoptimization.com/ E-mail: contact@circuitoptimization.com/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    CTS Surveyor

    CTS Surveyor

    Foot traffic and facial analytics for your business and home

    Surveyor is a software solution that monitors its environment via camera and gathers demographic information about the public in the surrounding area, providing important statistics such as number of people passing by as well as providing facial analytics to classify the pedestrians based on their age and gender. The statistical data is stored in a local database and is made available via RESTful API’s, and easy integration with other applications can be accomplished via a WebSocket...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Universe Starter Agent

    Universe Starter Agent

    A starter agent that can solve a number of universe environments

    The universe-starter-agent repository is an archived OpenAI codebase designed as a starter reinforcement-learning agent that can interact with and solve tasks in OpenAI’s Universe environment platform. Its purpose is to serve as a baseline or reference implementation so researchers or developers can see how to build agents that operate in real-time, visual environments (e.g., games, browser apps) via pixel observations and keyboard/mouse actions. Under the hood, this starter agent implements...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    popt4jlib

    Parallel Optimization Library for Java

    popt4jlib is an open-source parallel optimization library for the Java programming language supporting both shared memory and distributed message passing models. Implements a number of meta-heuristic algorithms for Non-Linear Programming, including Genetic Algorithms, Differential Evolution, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization, Firefly Algorithm, Monte-Carlo Search, Local Search algorithms, Gradient-Descent-based algorithms, as well as some well-known network flow and other graph algorithms. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different categories in between, then the other points act as a barrier and the prototype will not find its optimum position during training. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    faif

    faif

    C++ header only library with AI and bioinformatics algorithms

    C++ header only library, small and fast; Naive Bayesian Classifier, Decision Tree Classifier (ID3), DNA/RNA nucleotide second structure predictor, timeseries management, timeseries prediction, generic Evolutionary Algorithm, generic Hill Climbing algorithm and others.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ExSTraCS

    ExSTraCS

    Extended Supervised Tracking and Classifying System

    This advanced machine learning algorithm is a Michigan-style learning classifier system (LCS) developed to specialize in classification, prediction, data mining, and knowledge discovery tasks. Michigan-style LCS algorithms constitute a unique class of algorithms that distribute learned patterns over a collaborative population of of individually interpretable IF:THEN rules, allowing them to flexibly and effectively describe complex and diverse problem spaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SharpNEAT
    SharpNEAT is an optimised, neuro-evolution framework written in C#. Included is a front-end GUI, a number of example problem domains and some additional applications for viewing and simulating evolved networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Neural Libs

    Neural Libs

    Neural network library for developers

    This project includes the implementation of a neural network MLP, RBF, SOM and Hopfield networks in several popular programming languages. The project also includes examples of the use of neural networks as function approximation and time series prediction. Includes a special program makes it easy to test neural network based on training data and the optimization of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next