Spotlight
Deep recommender models using PyTorch
..., and 20M. It also incorporates utilities for creating synthetic datasets. For example, generate_sequential generates a Markov-chain-derived interaction dataset, where the next item a user chooses is a function of their previous interactions. Recommendations can be seen as a sequence prediction task: given the items a user has interacted with in the past, what will be the next item they will interact with? Spotlight provides a range of models.