Showing 46 open source projects for "clustering algorithm matlab"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Learn More
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 1
    MatlabMachine

    MatlabMachine

    Machine learning algorithms

    Matlab-Machine is a comprehensive collection of machine learning algorithms implemented in MATLAB. It includes both basic and advanced techniques for classification, regression, clustering, and dimensionality reduction. Designed for educational and research purposes, the repository provides clear implementations that help users understand core ML concepts.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    HDBSCAN - Hierarchical Density-Based Spatial Clustering of Applications with Noise. Performs DBSCAN over varying epsilon values and integrates the result to find a clustering that gives the best stability over epsilon. This allows HDBSCAN to find clusters of varying densities (unlike DBSCAN), and be more robust to parameter selection. In practice this means that HDBSCAN returns a good clustering straight away with little or no parameter tuning -- and the primary parameter, minimum cluster size, is intuitive and easy to select. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    sktime

    sktime

    A unified framework for machine learning with time series

    ...It features dedicated time series algorithms and tools for composite model building such as pipelining, ensembling, tuning, and reduction, empowering users to apply an algorithm designed for one task to another.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Alink

    Alink

    Alink is the Machine Learning algorithm platform based on Flink

    Alink is Alibaba’s scalable machine learning algorithm platform built on Apache Flink, designed for batch and stream data processing. It provides a wide variety of ready-to-use ML algorithms for tasks like classification, regression, clustering, recommendation, and more. Written in Java and Scala, Alink is suitable for enterprise-grade big data applications where performance and scalability are crucial.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 5
    Homemade Machine Learning

    Homemade Machine Learning

    Python examples of popular machine learning algorithms

    homemade-machine-learning is a repository by Oleksii Trekhleb containing Python implementations of classic machine-learning algorithms done “from scratch”, meaning you don’t rely heavily on high-level libraries but instead write the logic yourself to deepen understanding. Each algorithm is accompanied by mathematical explanations, visualizations (often via Jupyter notebooks), and interactive demos so you can tweak parameters, data, and observe outcomes in real time. The purpose is pedagogical: you’ll see linear regression, logistic regression, k-means clustering, neural nets, decision trees, etc., built in Python using fundamentals like NumPy and Matplotlib, not hidden behind API calls. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    The Operator Splitting QP Solver

    OSQP uses a specialized ADMM-based first-order method with custom sparse linear algebra routines that exploit structure in problem data. The algorithm is absolutely division-free after the setup and it requires no assumptions on problem data (the problem only needs to be convex). It just works. OSQP has an easy interface to generate customized embeddable C code with no memory manager required. OSQP supports many interfaces including C/C++, Fortran, Matlab, Python, R, Julia, Rust.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Smile

    Smile

    Statistical machine intelligence and learning engine

    Smile is a fast and comprehensive machine learning engine. With advanced data structures and algorithms, Smile delivers the state-of-art performance. Compared to this third-party benchmark, Smile outperforms R, Python, Spark, H2O, xgboost significantly. Smile is a couple of times faster than the closest competitor. The memory usage is also very efficient. If we can train advanced machine learning models on a PC, why buy a cluster? Write applications quickly in Java, Scala, or any JVM...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Armadillo

    Armadillo

    fast C++ library for linear algebra & scientific computing

    * Fast C++ library for linear algebra (matrix maths) and scientific computing * Easy to use functions and syntax, deliberately similar to Matlab / Octave * Uses template meta-programming techniques to increase efficiency * Provides user-friendly wrappers for OpenBLAS, Intel MKL, LAPACK, ATLAS, ARPACK, SuperLU and FFTW libraries * Useful for machine learning, pattern recognition, signal processing, bioinformatics, statistics, finance, etc. * Downloads:...
    Leader badge
    Downloads: 2,709 This Week
    Last Update:
    See Project
  • 9
    Bandicoot

    Bandicoot

    fast C++ library for GPU linear algebra & scientific computing

    * Fast GPU linear algebra library (matrix maths) for the C++ language, aiming towards a good balance between speed and ease of use * Provides high-level syntax and functionality deliberately similar to Matlab * Provides an API that is aiming to be compatible with Armadillo for easy transition between CPU and GPU linear algebra code * Useful for algorithm development directly in C++, or quick conversion of research code into production environments * Distributed under the permissive Apache 2.0 license, useful for both open-source and proprietary (closed-source) software * Can be used for machine learning, pattern recognition, computer vision, signal processing, bioinformatics, statistics, finance, etc * Downloads: http://coot.sourceforge.io/download.html * Documentation: http://coot.sourceforge.io/docs.html * Bug reports: http://coot.sourceforge.io/faq.html * Git repo: https://gitlab.com/conradsnicta/bandicoot-code
    Downloads: 14 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 10
    LRSLibrary

    LRSLibrary

    Low-Rank and Sparse Tools for Background Modeling and Subtraction

    LRSLibrary is a MATLAB library offering a broad collection of low-rank plus sparse decomposition algorithms, primarily aimed at background/foreground modeling from videos (background subtraction) and related computer vision tasks. Compatibility across MATLAB versions (tested in R2014–R2017) The library includes matrix and tensor methods (over 100 algorithms) and has been tested across MATLAB versions from R2014 onward.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MTCNN Face Detection Alignment

    MTCNN Face Detection Alignment

    Joint Face Detection and Alignment

    MTCNN_face_detection_alignment is an implementation of the “Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks” algorithm. The algorithm uses a cascade of three convolutional networks (P-Net, R-Net, O-Net) to jointly detect faces (bounding boxes) and align facial landmarks in a coarse-to-fine manner, leveraging multi-task learning. Non-maximum suppression and bounding box regression at each stage. The repository includes Caffe / MATLAB code, support scripts, and instructions for dependencies. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CDF-TS
    This Matlab code is used for demonstration of the effect of CDF-TS as a preprocessing method to transform data. Written by Ye Zhu, Deakin University, April 2021, version 1.0. This software is under GNU General Public License version 3.0 (GPLv3) This code is a demo of method described by the following publication: Zhu, Y., Ting, K.M., Carman, M. and Angelova, M., 2021, April. CDF Transform-and-Shift: An effective way to deal with datasets of inhomogeneous cluster densities. Pattern...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Isolation Similarity

    Isolation Similarity

    aNNE similarity based on Isolation Kernel

    Demo of using aNNE similarity for DBSCAN. Written by Xiaoyu Qin, Monash University, March 2019, version 1.0 This software is under GNU General Public License version 3.0 (GPLv3) This code is a demo of method described by the following publication: Qin, X., Ting, K.M., Zhu, Y. and Lee, V.C., 2019, July. Nearest-neighbour-induced isolation similarity and its impact on density-based clustering. In Proceedings of the AAAI Conference on Artificial Intelligence (Vol. 33, pp....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Coursera Machine Learning

    Coursera Machine Learning

    Coursera Machine Learning By Prof. Andrew Ng

    CourseraMachineLearning is a personal collection of resources, notes, and programming exercises from Andrew Ng’s popular Machine Learning course on Coursera. It consolidates lecture references, programming tutorials, test cases, and supporting materials into one repository for easier review and practice. The project highlights fundamental machine learning concepts such as hypothesis functions, cost functions, gradient descent, bias-variance tradeoffs, and regression models. It also organizes...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    Clustering by Shared Subspaces

    Clustering by Shared Subspaces

    Grouping Points by Shared Subspaces for Effective Subspace Clustering

    These functions implement a subspace clustering algorithm, proposed by Ye Zhu, Kai Ming Ting, and Mark J. Carman: "Grouping Points by Shared Subspaces for Effective Subspace Clustering", Published in Pattern Recognition Journal at https://doi.org/10.1016/j.patcog.2018.05.027
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Distance Scaling

    Distance Scaling

    A Distance Scaling Method to Improve Density-Based Clustering

    These functions implement a distance scaling method, proposed by Ye Zhu, Kai Ming Ting, and Maia Angelova, "A Distance Scaling Method to Improve Density-Based Clustering", in PAKDD2018 proceedings: https://doi.org/10.1007/978-3-319-93040-4_31.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    MatlabFunc

    MatlabFunc

    Matlab codes for feature learning

    MatlabFunc is a collection of MATLAB functions developed by the ZJULearning group to support various tasks in computer vision, machine learning, and numerical computation. The repository brings together a wide range of utility scripts, algorithms, and implementations that serve as building blocks for research and development. These functions cover areas such as matrix operations, optimization, data processing, and visualization, making them broadly applicable across different research...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Toolbox

    Toolbox

    Piotr's Image & Video Matlab Toolbox

    Piotr’s Image & Video MATLAB Toolbox is a general-purpose MATLAB toolbox for image and video processing and vision tasks, offering utilities, filters, detection, feature extraction, and algorithm building blocks. Example and demo scripts for usage (e.g. acfReadme, detector readmes). It augments MATLAB’s native capabilities (not replacing the Image Processing Toolbox) by providing efficient, reusable wrappers and optimized routines.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19

    popt4jlib

    Parallel Optimization Library for Java

    popt4jlib is an open-source parallel optimization library for the Java programming language supporting both shared memory and distributed message passing models. Implements a number of meta-heuristic algorithms for Non-Linear Programming, including Genetic Algorithms, Differential Evolution, Evolutionary Algorithms, Simulated Annealing, Particle Swarm Optimization, Firefly Algorithm, Monte-Carlo Search, Local Search algorithms, Gradient-Descent-based algorithms, as well as some well-known...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20

    DGRLVQ

    Dynamic Generalized Relevance Learning Vector Quantization

    Some of the usual problems for Learning vector quantization (LVQ) based methods are that one cannot optimally guess about the number of prototypes required for initialization for multimodal data structures i.e.these algorithms are very sensitive to initialization of prototypes and one has to pre define the optimal number of prototypes before running the algorithm. If a prototype, for some reasons, is ‘outside’ the cluster which it should represent and if there are points of a different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ECO

    ECO

    Matlab implementation of the ECO tracker

    ECO (Efficient Convolution Operators for Tracking) is a high-performance object tracking algorithm developed by Martin Danelljan and collaborators. It is based on discriminative correlation filters and designed to handle appearance changes, occlusions, and scale variations in visual object tracking tasks. The code provides a MATLAB implementation of the ECO and ECO-HC (high-speed) variants and was one of the top performers on multiple visual tracking benchmarks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    All future developments will be implemented in the new MATLAB toolbox SciXMiner, please visit https://sourceforge.net/projects/scixminer/ to download the newest version. The former Matlab toolbox Gait-CAD was designed for the visualization and analysis of time series and features with a special focus to data mining problems including classification, regression, and clustering.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Density-ratio based clustering

    Density-ratio based clustering

    Discovering clusters with varying densities

    This site provides the source code of two approaches for density-ratio based clustering, used for discovering clusters with varying densities. One approach is to modify a density-based clustering algorithm to do density-ratio based clustering by using its density estimator to compute density-ratio. The other approach involves rescaling the given dataset only. An existing density-based clustering algorithm, which is applied to the rescaled dataset, can find all clusters with varying densities that would otherwise impossible had the same algorithm been applied to the unscaled dataset. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24

    GI-ICA

    Matlab implementation of GI-ICA and PEGI

    This is a matlab implementation of the GI-ICA algorithm for ICA in the presence of an additive Gaussian noise. The algorithm is discussed in the paper "Fast Algorithms for Gaussian Noise Invariant Independent Component Analysis" by James Voss, Luis Rademacher, and Mikhail Belkin.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25

    Java Library for Machine Learning

    A pure Java library for machine learning

    JML is a machine learning library in Java, it is a pure Java package, and thus is cross-platform. The goal of JML is to make machine learning methods very easy to use and speed up code conversion from MATLAB to Java. Please be noted that JML has been replaced by LAML.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next