Showing 68 open source projects for "artificial neural network matlab code"

View related business solutions
  • Level Up Your Cyber Defense with External Threat Management Icon
    Level Up Your Cyber Defense with External Threat Management

    See every risk before it hits. From exposed data to dark web chatter. All in one unified view.

    Move beyond alerts. Gain full visibility, context, and control over your external attack surface to stay ahead of every threat.
    Try for Free
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 1
    Screenshot to Code

    Screenshot to Code

    A neural network that transforms a design mock-up into static websites

    Screenshot-to-code is a tool or prototype that attempts to convert UI screenshots (e.g., of mobile or web UIs) into code representations, likely generating layouts, HTML, CSS, or markup from image inputs. It is part of a research/proof-of-concept domain in UI automation and image-to-UI code generation. Mapping visual design to code constructs. Code/UI layout (HTML, CSS, or markup). Examples/demo scripts showing “image UI code”.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Neural Network Intelligence

    Neural Network Intelligence

    AutoML toolkit for automate machine learning lifecycle

    Neural Network Intelligence is an open source AutoML toolkit for automate machine learning lifecycle, including feature engineering, neural architecture search, model compression and hyper-parameter tuning. NNI (Neural Network Intelligence) is a lightweight but powerful toolkit to help users automate feature engineering, neural architecture search, hyperparameter tuning and model compression. The tool manages automated machine learning (AutoML) experiments, dispatches and runs experiments'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Sonnet

    Sonnet

    TensorFlow-based neural network library

    Sonnet is a neural network library built on top of TensorFlow designed to provide simple, composable abstractions for machine learning research. Sonnet can be used to build neural networks for various purposes, including different types of learning. Sonnet’s programming model revolves around a single concept: modules. These modules can hold references to parameters, other modules and methods that apply some function on the user input. There are a number of predefined modules that already...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Gen.jl

    Gen.jl

    A general-purpose probabilistic programming system

    An open-source stack for generative modeling and probabilistic inference. Gen’s inference library gives users building blocks for writing efficient probabilistic inference algorithms that are tailored to their models, while automating the tricky math and the low-level implementation details. Gen helps users write hybrid algorithms that combine neural networks, variational inference, sequential Monte Carlo samplers, and Markov chain Monte Carlo. Gen features an easy-to-use modeling language...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 5
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    DeepDetect

    DeepDetect

    Deep Learning API and Server in C++14 support for Caffe, PyTorch

    The core idea is to remove the error sources and difficulties of Deep Learning applications by providing a safe haven of commoditized practices, all available as a single core. While the Open Source Deep Learning Server is the core element, with REST API, and multi-platform support that allows training & inference everywhere, the Deep Learning Platform allows higher level management for training neural network models and using them as if they were simple code snippets. Ready for applications...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    MIVisionX

    MIVisionX

    Set of comprehensive computer vision & machine intelligence libraries

    MIVisionX toolkit is a set of comprehensive computer vision and machine intelligence libraries, utilities, and applications bundled into a single toolkit. AMD MIVisionX delivers highly optimized open-source implementation of the Khronos OpenVX™ and OpenVX™ Extensions along with Convolution Neural Net Model Compiler & Optimizer supporting ONNX, and Khronos NNEF™ exchange formats. The toolkit allows for rapid prototyping and deployment of optimized computer vision and machine learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    pytorch-cpp

    pytorch-cpp

    C++ Implementation of PyTorch Tutorials for Everyone

    C++ Implementation of PyTorch Tutorials for Everyone. This repository provides tutorial code in C++ for deep learning researchers to learn PyTorch (i.e. Section 1 to 3) Interactive Tutorials are currently running on LibTorch Nightly Version. Libtorch only supports 64bit Windows and an x64 generator needs to be specified. Create all required script module files for pre-learned models/weights during the build. Requires installed python3 with PyTorch and torch-vision. You can choose to only...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    The database for AI-powered applications.

    MongoDB Atlas is the developer-friendly database used to build, scale, and run gen AI and LLM-powered apps—without needing a separate vector database. Atlas offers built-in vector search, global availability across 115+ regions, and flexible document modeling. Start building AI apps faster, all in one place.
    Start Free
  • 10
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    NeuralProphet bridges the gap between traditional time-series models and deep learning methods. It's based on PyTorch and can be installed using pip. A Neural Network based Time-Series model, inspired by Facebook Prophet and AR-Net, built on PyTorch. You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date. Docstrings should be reliable, please refer to those when in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Alpa

    Alpa

    Training and serving large-scale neural networks

    Alpa is a system for training and serving large-scale neural networks. Scaling neural networks to hundreds of billions of parameters has enabled dramatic breakthroughs such as GPT-3, but training and serving these large-scale neural networks require complicated distributed system techniques. Alpa aims to automate large-scale distributed training and serving with just a few lines of code.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AlphaZero.jl

    AlphaZero.jl

    A generic, simple and fast implementation of Deepmind's AlphaZero

    Beyond its much publicized success in attaining superhuman level at games such as Chess and Go, DeepMind's AlphaZero algorithm illustrates a more general methodology of combining learning and search to explore large combinatorial spaces effectively. We believe that this methodology can have exciting applications in many different research areas. Because AlphaZero is resource-hungry, successful open-source implementations (such as Leela Zero) are written in low-level languages (such as C++)...
    Downloads: 27 This Week
    Last Update:
    See Project
  • 16
    MTCNN Face Detection Alignment

    MTCNN Face Detection Alignment

    Joint Face Detection and Alignment

    MTCNN_face_detection_alignment is an implementation of the “Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks” algorithm. The algorithm uses a cascade of three convolutional networks (P-Net, R-Net, O-Net) to jointly detect faces (bounding boxes) and align facial landmarks in a coarse-to-fine manner, leveraging multi-task learning. Non-maximum suppression and bounding box regression at each stage. The repository includes Caffe / MATLAB code, support scripts,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Hello AI World

    Hello AI World

    Guide to deploying deep-learning inference networks

    Hello AI World is a great way to start using Jetson and experiencing the power of AI. In just a couple of hours, you can have a set of deep learning inference demos up and running for realtime image classification and object detection on your Jetson Developer Kit with JetPack SDK and NVIDIA TensorRT. The tutorial focuses on networks related to computer vision, and includes the use of live cameras. You’ll also get to code your own easy-to-follow recognition program in Python or C++, and train...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    nlpaug

    nlpaug

    Data augmentation for NLP

    This Python library helps you with augmenting nlp for your machine learning projects. Visit this introduction to understand Data Augmentation in NLP. Augmenter is the basic element of augmentation while Flow is a pipeline to orchestra multi augmenters together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ConvNeXt

    ConvNeXt

    Code release for ConvNeXt model

    ConvNeXt is a modernized convolutional neural network (CNN) architecture designed to rival Vision Transformers (ViTs) in accuracy and scalability while retaining the simplicity and efficiency of CNNs. It revisits classic ResNet-style backbones through the lens of transformer design trends—large kernel sizes, inverted bottlenecks, layer normalization, and GELU activations—to bridge the performance gap between convolutions and attention-based models. ConvNeXt’s clean, hierarchical structure...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    WaveRNN

    WaveRNN

    WaveRNN Vocoder + TTS

    WaveRNN is a PyTorch implementation of DeepMind’s WaveRNN vocoder, bundled with a Tacotron-style TTS front end to form a complete text-to-speech stack. As a vocoder, WaveRNN models raw audio with a compact recurrent neural network that can generate high-quality waveforms more efficiently than many traditional autoregressive models. The repository includes scripts and code for preprocessing datasets such as LJSpeech, training Tacotron to produce mel spectrograms, training WaveRNN on those...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    DnCNN

    DnCNN

    Beyond a Gaussian Denoiser: Residual Learning of Deep CNN

    ...The repository includes training code (using MatConvNet / MATLAB), demo scripts, pretrained models, and evaluation routines. Single model handling multiple noise levels.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 23
    CAM

    CAM

    Class Activation Mapping

    This repository implements Class Activation Mapping (CAM), a technique to expose the implicit attention of convolutional neural networks by generating heatmaps that highlight the most discriminative image regions influencing a network’s class prediction. The method involves modifying a CNN model slightly (e.g., using global average pooling before the final layer) to produce a weighted combination of feature maps as the class activation map. Integration with existing CNNs (with light...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    TNN

    TNN

    Uniform deep learning inference framework for mobile

    TNN, a high-performance, lightweight neural network inference framework open sourced by Tencent Youtu Lab. It also has many outstanding advantages such as cross-platform, high performance, model compression, and code tailoring. The TNN framework further strengthens the support and performance optimization of mobile devices on the basis of the original Rapidnet and ncnn frameworks. At the same time, it refers to the high performance and good scalability characteristics of the industry's...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019). The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next