Showing 5106 open source projects for "java open source"

View related business solutions
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • 1
    GetProfile

    GetProfile

    User profile and long-term memory for your AI agent

    GetProfile is a drop-in proxy layer that sits in front of your LLM provider to turn otherwise stateless chat requests into a system with persistent user profiles and long-term memory. Instead of forcing you to redesign your application, you route your model calls through GetProfile and it captures conversation context automatically as traffic flows. It then extracts structured traits and “memories” from those conversations, stores them, and injects the most relevant profile context back into...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Monoio

    Monoio

    Rust async runtime based on io-uring

    Monoio is a Rust asynchronous runtime designed for high-performance I/O-bound servers and applications, built around native OS async I/O primitives (e.g. io_uring on Linux, epoll / kqueue on other Unix-like systems), rather than layering atop an existing runtime. Its design philosophy centers on a “thread-per-core” model where each core runs its own event loop, minimizing cross-thread synchronization needs, avoiding the overhead and complexity of task scheduling, and letting developers write...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    llmx.txt hub

    llmx.txt hub

    The largest directory for AI-ready documentation and tools

    llms-txt-hub serves as a central directory and knowledge base for the emerging llms.txt convention, a simple, text-based way for project owners to communicate preferences to AI tools. It catalogs implementations across projects and platforms, helping maintain a shared understanding of how LLM-powered services should interact with code and documentation. The repository aims to standardize patterns for allowlists, denylists, attribution, rate expectations, and contact information, mirroring...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    plexe

    plexe

    Build a machine learning model from a prompt

    plexe lets you build machine-learning systems from natural-language prompts, turning plain English goals into working pipelines. You describe what you want—a predictor, a classifier, a forecaster—and the tool plans data ingestion, feature preparation, model training, and evaluation automatically. Under the hood an agent executes the plan step by step, surfacing intermediate results and artifacts so you can inspect or override choices. It aims to be production-minded: models can be exported,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • MyQ Print Management Software Icon
    MyQ Print Management Software

    SAVE TIME WITH PERSONALIZED PRINT SOLUTIONS

    Boost your digital or traditional workplace with MyQ’s secure print and scan solutions that respect your time and help you focus on what you do best.
    Learn More
  • 5
    Deep Learning Models

    Deep Learning Models

    A collection of various deep learning architectures, models, and tips

    This repository collects clear, well-documented implementations of deep learning models and training utilities written by Sebastian Raschka. The code favors readability and pedagogy: components are organized so you can trace data flow through layers, losses, optimizers, and evaluation. Examples span fundamental architectures—MLPs, CNNs, RNN/Transformers—and practical tasks like image classification or text modeling. Reproducible training scripts and configuration files make it...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Magika

    Magika

    Fast and accurate AI powered file content types detection

    Magika is an AI-powered file-type detector that uses a compact deep-learning model to classify binary and textual files with high accuracy and very low latency. The model is engineered to be only a few megabytes and to run quickly even on CPU-only systems, making it practical for desktop apps, servers, and security pipelines. Magika ships as a command-line tool and a library, providing drop-in detection that improves on traditional “magic number” and heuristic approaches, especially for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    DBHub

    DBHub

    Universal database MCP server connecting to MySQL, PostgreSQL

    DBHub is a universal database gateway that implements the MCP server interface so assistants and IDEs can explore and query databases through typed tools. It supports multiple transports—stdio for desktop clients and HTTP for networked scenarios—making it flexible to embed or deploy. Configuration is environment-variable driven, with a DSN and per-engine settings covering Postgres, MySQL, MariaDB, SQL Server, and SQLite. Operational flags include read-only mode, row limits, and even SSH...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Awesome-MCP-ZH

    Awesome-MCP-ZH

    Claude MCP, MCP Servers, MCP Clients

    Awesome-MCP-ZH is a curated, Chinese-language “awesome list” that maps the Model Context Protocol ecosystem for newcomers and practitioners. It organizes learning resources, how-tos, and explainers alongside living catalogs of MCP servers, clients, and tooling so users can get productive quickly. The curation emphasizes beginner-friendly on-ramps, including clients that bundle runtimes and one-click setups, as well as advanced references for power users. Regular updates and community stars...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    BrowserTools MCP

    BrowserTools MCP

    Monitor browser logs directly from Cursor

    Browser Tools MCP is an MCP server and Chrome extension that gives AI agents safe, structured access to your live browser for debugging and automation. It can capture console/network logs, DOM snapshots, and screenshots, and expose them as typed resources the agent can query or act on. The design aims to make IDE agents (e.g., Cursor, Claude Desktop) more “web-aware,” enabling workflows like reproducing a bug, collecting evidence, and proposing fixes without copy-pasting. Documentation and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 10
    Scrapling

    Scrapling

    An undetectable, powerful, flexible, high-performance Python library

    Scrapling is a Python scraping framework built for the modern web, combining high-performance fetchers with a rapid parsing engine to handle dynamic sites and anti-bot countermeasures. It emphasizes being “undetectable,” flexible, and fast, offering an approachable API for both experienced scrapers and newcomers. The library targets the full scraping pipeline: session handling, fetching, rendering when needed, parsing, and export—while keeping ergonomics front and center. Community posts and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    CLIP

    CLIP

    CLIP, Predict the most relevant text snippet given an image

    CLIP (Contrastive Language-Image Pretraining) is a neural model that links images and text in a shared embedding space, allowing zero-shot image classification, similarity search, and multimodal alignment. It was trained on large sets of (image, caption) pairs using a contrastive objective: images and their matching text are pulled together in embedding space, while mismatches are pushed apart. Once trained, you can give it any text labels and ask it to pick which label best matches a given...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AgentForge

    AgentForge

    Extensible AGI Framework

    AgentForge is a framework for creating and deploying AI agents that can perform autonomous decision-making and task execution. It enables developers to define agent behaviors, train models, and integrate AI-powered automation into various applications.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    aisuite

    aisuite

    Simple, unified interface to multiple Generative AI providers

    Simple, unified interface to multiple Generative AI providers. aisuite makes it easy for developers to use multiple LLM through a standardized interface. Using an interface similar to OpenAI's, aisuite makes it easy to interact with the most popular LLMs and compare the results. It is a thin wrapper around Python client libraries and allows creators to seamlessly swap out and test responses from different LLM providers without changing their code. Today, the library is primarily focused on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    NeMo Curator is a Python library specifically designed for fast and scalable dataset preparation and curation for large language model (LLM) use-cases such as foundation model pretraining, domain-adaptive pretraining (DAPT), supervised fine-tuning (SFT) and paramter-efficient fine-tuning (PEFT). It greatly accelerates data curation by leveraging GPUs with Dask and RAPIDS, resulting in significant time savings. The library provides a customizable and modular interface, simplifying pipeline...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SWE-agent

    SWE-agent

    SWE-agent takes a GitHub issue and tries to automatically fix it

    SWE-agent turns LMs (e.g. GPT-4) into software engineering agents that can resolve issues in real GitHub repositories. On the SWE-bench, the SWE-agent resolves 12.47% of issues, achieving state-of-the-art performance on the full test set. We accomplish our results by designing simple LM-centric commands and feedback formats to make it easier for the LM to browse the repository, and view, edit, and execute code files. We call this an Agent-Computer Interface (ACI).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework that simplifies event and stream processing. Because Bytewax couples the stream and event processing capabilities of Flink, Spark, and Kafka Streams with the friendly and familiar interface of Python, you can re-use the Python libraries you already know and love. Connect data sources, run stateful transformations, and write to various downstream systems with built-in connectors or existing Python libraries. Bytewax is a Python framework and Rust distributed...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    AI Employe

    AI Employe

    Create browser automation as if you were teaching a human using GPT-4

    Try without Firebase authentication (temporary solution). Our stack consists of Next.js, Rust, Postgres, MeiliSearch, and Firebase Auth for authentication. Please sign up for a Firebase account and create a project. There are several techniques for this, ranging from sending a shortened form of HTML to GPT-3, creating a bounding box with IDs and sending it to GPT-4-vision to take actions, or directly asking GPT-4-vision to obtain the X and Y coordinates of the element. However, none of these...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    gplearn

    gplearn

    Genetic Programming in Python, with a scikit-learn inspired API

    gplearn implements Genetic Programming in Python, with a scikit-learn-inspired and compatible API. While Genetic Programming (GP) can be used to perform a very wide variety of tasks, gplearn is purposefully constrained to solving symbolic regression problems. This is motivated by the scikit-learn ethos, of having powerful estimators that are straightforward to implement. Symbolic regression is a machine learning technique that aims to identify an underlying mathematical expression that best...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    whisper-timestamped

    whisper-timestamped

    Multilingual Automatic Speech Recognition with word-level timestamps

    Multilingual Automatic Speech Recognition with word-level timestamps and confidence. Whisper is a set of multi-lingual, robust speech recognition models trained by OpenAI that achieve state-of-the-art results in many languages. Whisper models were trained to predict approximate timestamps on speech segments (most of the time with 1-second accuracy), but they cannot originally predict word timestamps. This repository proposes an implementation to predict word timestamps and provide a more...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Featureform

    Featureform

    Turn your existing data infrastructure into a feature store

    Featureform allows data scientists to define, manage, and serve machine learning features across your organization. The days of untitled_128.ipynb are over. Transformations, features, and training sets can be pushed from notebooks to a centralized feature repository with metadata like name, variant, lineage, and owner. Featureform's Virtual Feature Store architecture orchestrates your data infrastructure to build and maintain your training sets and production features. It offers a framework...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device. Core ML optimizes on-device...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and...
    Downloads: 0 This Week
    Last Update:
    See Project