Showing 1866 open source projects for "python linux"

View related business solutions
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • BoldTrail Real Estate CRM Icon
    BoldTrail Real Estate CRM

    A first-of-its-kind homeownership solution that puts YOU at the center of the coveted lifetime consumer relationship.

    BoldTrail, the #1 rated real estate platform, is built to power your entire brokerage with next-generation technology your agents will use and love. Showcase your unique brand with customizable websites for your company, offices, and every agent. Maximize lead capture with a modern, portal-like consumer search experience and intelligent behavior tracking. Hyper-local area pages, home valuation pages and options for rich lifestyle data keep customers searching with your brokerage as the local experts. The most robust lead gen tools on the market help your brokerage, teams & agents effectively drive new business - no matter their budget. Empower your agents to generate free leads instantly with our simple to use landing pages & IDX squeeze pages. Drive more leads with higher quality and lower cost through in-house tools built within the platform. Diversify lead sources with our automated social media posting, integrated Google and Facebook advertising, custom text codes and more.
    Learn More
  • 1
    min(DALL·E)

    min(DALL·E)

    min(DALL·E) is a fast, minimal port of DALL·E Mini to PyTorch

    This is a fast, minimal port of Boris Dayma's DALL·E Mini (with mega weights). It has been stripped down for inference and converted to PyTorch. The only third-party dependencies are numpy, requests, pillow and torch. The required models will be downloaded to models_root if they are not already there. Set the dtype to torch.float16 to save GPU memory. If you have an Ampere architecture GPU you can use torch.bfloat16. Set the device to either cuda or "cpu". Once everything has finished...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Guided Diffusion

    Guided Diffusion

    Codebase for Diffusion Models Beat GANS on Image Synthesis

    The guided-diffusion repository is centered on diffusion models for image synthesis, with a focus on classifier guidance and improvements over earlier diffusion frameworks. It is derived from OpenAI’s improved-diffusion work, enhanced to include guided generation where a classifier (or other guidance mechanism) can steer sampling toward desired classes or attributes. The code provides model definitions (UNet, diffusion schedules), sampling and training scripts, and utilities for guidance and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Alphafold2

    Alphafold2

    Unofficial Pytorch implementation / replication of Alphafold2

    To eventually become an unofficial working Pytorch implementation of Alphafold2, the breathtaking attention network that solved CASP14. Will be gradually implemented as more details of the architecture is released. Once this is replicated, I intend to fold all available amino acid sequences out there in-silico and release it as an academic torrent, to further science. Deepmind has open sourced the official code in Jax, along with the weights! This repository will now be geared towards a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    LaMDA-pytorch

    LaMDA-pytorch

    Open-source pre-training implementation of Google's LaMDA in PyTorch

    Open-source pre-training implementation of Google's LaMDA research paper in PyTorch. The totally not sentient AI. This repository will cover the 2B parameter implementation of the pre-training architecture as that is likely what most can afford to train. You can review Google's latest blog post from 2022 which details LaMDA here. You can also view their previous blog post from 2021 on the model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Failed Payment Recovery for Subscription Businesses Icon
    Failed Payment Recovery for Subscription Businesses

    For subscription companies searching for a failed payment recovery solution to grow revenue, and retain customers.

    FlexPay’s innovative platform uses multiple technologies to achieve the highest number of retained customers, resulting in reduced involuntary churn, longer life span after recovery, and higher revenue. Leading brands like LegalZoom, Hooked on Phonics, and ClinicSense trust FlexPay to recover failed payments, reduce churn, and increase customer lifetime value.
    Learn More
  • 5
    Disco Diffusion

    Disco Diffusion

    Notebooks, models and techniques for the generation of AI Art

    A frankensteinian amalgamation of notebooks, models, and techniques for the generation of AI art and animations. This project uses a special conversion tool to convert the Python files into notebooks for easier development. What this means is you do not have to touch the notebook directly to make changes to it. The tool being used is called Colab-Convert. Initial QoL improvements added, including user-friendly UI, settings+prompt saving, and improved google drive folder organization. Now...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    StudioGAN

    StudioGAN

    StudioGAN is a Pytorch library providing implementations of networks

    StudioGAN is a Pytorch library providing implementations of representative Generative Adversarial Networks (GANs) for conditional/unconditional image generation. StudioGAN aims to offer an identical playground for modern GANs so that machine learning researchers can readily compare and analyze a new idea. Moreover, StudioGAN provides an unprecedented-scale benchmark for generative models. The benchmark includes results from GANs (BigGAN-Deep, StyleGAN-XL), auto-regressive models (MaskGIT,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    WaveRNN

    WaveRNN

    WaveRNN Vocoder + TTS

    WaveRNN is a PyTorch implementation of DeepMind’s WaveRNN vocoder, bundled with a Tacotron-style TTS front end to form a complete text-to-speech stack. As a vocoder, WaveRNN models raw audio with a compact recurrent neural network that can generate high-quality waveforms more efficiently than many traditional autoregressive models. The repository includes scripts and code for preprocessing datasets such as LJSpeech, training Tacotron to produce mel spectrograms, training WaveRNN on those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Fairseq

    Fairseq

    Facebook AI Research Sequence-to-Sequence Toolkit written in Python

    Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language modeling and other text generation tasks. We provide reference implementations of various sequence modeling papers. Recent work by Microsoft and Google has shown that data parallel training can be made significantly more efficient by sharding the model parameters and optimizer state across data parallel workers. These ideas are encapsulated in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    ruDALL-E

    ruDALL-E

    Generate images from texts. In Russian

    We present a family of generative models from SberDevices and Sber AI! Models allow you to create images that did not exist before. All you need is a text description in Russian or another language. Try to create unique images together with generative artists using your own formulations. Ask generative artists to depict something special for you as well. The Kandinsky 2.0 model uses the reverse diffusion method and creates colorful images on various topics in a matter of seconds by text...
    Downloads: 0 This Week
    Last Update:
    See Project
  • AestheticsPro Medical Spa Software Icon
    AestheticsPro Medical Spa Software

    Our new software release will dramatically improve your medspa business performance while enhancing the customer experience

    AestheticsPro is the most complete Aesthetics Software on the market today. HIPAA Cloud Compliant with electronic charting, integrated POS, targeted marketing and results driven reporting; AestheticsPro delivers the tools you need to manage your medical spa business. It is our mission To Provide an All-in-One Cutting Edge Software to the Aesthetics Industry.
    Learn More
  • 10
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AI Atelier

    AI Atelier

    Based on the Disco Diffusion, version of the AI art creation software

    Based on the Disco Diffusion, we have developed a Chinese & English version of the AI art creation software "AI Atelier". We offer both Text-To-Image models (Disco Diffusion and VQGAN+CLIP) and Text-To-Text (GPT-J-6B and GPT-NEOX-20B) as options. Making available complete source code of licensed works and modifications, which include larger works using a licensed work, under the same license. Copyright and license notices must be preserved. When a modified version is used to provide a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    VoiceSmith

    VoiceSmith

    [WIP] VoiceSmith makes training text to speech models easy

    VoiceSmith makes it possible to train and infer on both single and multispeaker models without any coding experience. It fine-tunes a pretty solid text to speech pipeline based on a modified version of DelightfulTTS and UnivNet on your dataset. Both models were pretrained on a proprietary 5000 speaker dataset. It also provides some tools for dataset preprocessing like automatic text normalization. Windows (only CPU supported currently) or any Linux based operating system. If you want to run...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ASRT Speech Recognition

    ASRT Speech Recognition

    A Deep-Learning-Based Chinese Speech Recognition System

    ASRT is an end-to-end deep-learning Chinese ASR system built with TensorFlow/Keras, using convolution + CTC and a Max-Entropy HMM language model. It provides a REST/gRPC server backend and client SDKs in multiple languages (Python, Java, Go, Windows). Notably lightweight, it performs well without needing GPU acceleration and runs across platforms, targeting developers and researchers building Chinese voice interfaces.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16

    avio

    Python version of ffplay with built-in AI

    See the Files tab above for installation instructions
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    pyprobml

    pyprobml

    Python code for "Probabilistic Machine learning" book by Kevin Murphy

    Python 3 code to reproduce the figures in the books Probabilistic Machine Learning: An Introduction (aka "book 1") and Probabilistic Machine Learning: Advanced Topics (aka "book 2"). The code uses the standard Python libraries, such as numpy, scipy, matplotlib, sklearn, etc. Some of the code (especially in book 2) also uses JAX, and in some parts of book 1, we also use Tensorflow 2 and a little bit of Torch. See also probml-utils for some utility code that is shared across multiple notebooks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    ModelFox

    ModelFox

    ModelFox makes it easy to train, deploy, and monitor ML models

    ModelFox makes it easy to train, deploy, and monitor machine learning models. Train a model from a CSV file on the command line. Make predictions from Elixir, Go, JavaScript, PHP, Python, Ruby, or Rust. Learn about your models and monitor them in production from your browser. ModelFox makes it easy to train, deploy, and monitor machine learning models. You can install the modelfox CLI by either downloading the binary from the latest GitHub release or by building from source. Train a machine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    ...Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. Catalyst is compatible with Python 3.6+. PyTorch 1.1+, and has been tested on Ubuntu 16.04/18.04/20.04, macOS 10.15, Windows 10 and Windows Subsystem for Linux. It's part of the PyTorch Ecosystem, as well as the Catalyst Ecosystem which includes Alchemy (experiments logging & visualization) and Reaction (convenient deep learning models serving).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 20
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. Prepare your own dataset with images and labels first. For labeling images, you can use tools like Labelme or CVAT. One more thing worth noting is that you should also implement pull_item and load_anno method...
    Downloads: 21 This Week
    Last Update:
    See Project
  • 21
    Guild AI

    Guild AI

    Experiment tracking, ML developer tools

    Guild AI is an open-source experiment tracking toolkit designed to bring systematic control to machine learning workflows, enabling users to build better models faster. It automatically captures every detail of training runs as unique experiments, facilitating comprehensive tracking and analysis. Users can compare and analyze runs to deepen their understanding and incrementally improve models. Guild AI simplifies hyperparameter tuning by applying state-of-the-art algorithms through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DeeProtGO

    DeeProtGO

    DeeProtGO is a deep learning model for predicting GO terms of proteins

    This project contains the source code of DeeProtGO as well as an example of its use when predicting GO terms of the biological process sub-ontology for eukaryotic proteins.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project