Showing 601 open source projects for "python games source code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 1
    nanochat

    nanochat

    The best ChatGPT that $100 can buy

    nanochat is a from-scratch, end-to-end “mini ChatGPT” that shows the entire path from raw text to a chatty web app in one small, dependency-lean codebase. The repository stitches together every stage of the lifecycle: tokenizer training, pretraining a Transformer on a large web corpus, mid-training on dialogue and multiple-choice tasks, supervised fine-tuning, optional reinforcement learning for alignment, and finally efficient inference with caching. Its north star is approachability and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Segment Anything

    Segment Anything

    Provides code for running inference with the SegmentAnything Model

    Segment Anything (SAM) is a foundation model for image segmentation that’s designed to work “out of the box” on a wide variety of images without task-specific fine-tuning. It’s a promptable segmenter: you guide it with points, boxes, or rough masks, and it predicts high-quality object masks consistent with the prompt. The architecture separates a powerful image encoder from a lightweight mask decoder, so the heavy vision work can be computed once and the interactive part stays fast. A...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Prompt Engineering Interactive Tutorial

    Prompt Engineering Interactive Tutorial

    Anthropic's Interactive Prompt Engineering Tutorial

    Prompt-eng-interactive-tutorial is a comprehensive, hands-on tutorial that teaches the craft of prompt engineering with Claude through guided, executable lessons. It starts with the anatomy of a good prompt and moves into techniques that deliver the “80/20” gains—separating instructions from data, specifying schemas, and setting evaluation criteria. The course leans heavily on realistic failure modes (ambiguity, hallucination, brittle instructions) and shows how to iteratively debug prompts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    DreamCraft3D is DeepSeek’s generative 3D modeling framework / model family that likely extends their earlier 3D efforts (e.g. Shap-E or Point-E style models) with more capability, control, or expression. The name suggests a “dream crafting” metaphor—users probably supply textual or image prompts and generate 3D assets (point clouds, meshes, scenes). The repository includes model code, inference scripts, sample prompts, and possibly dataset preparation pipelines. It may integrate rendering or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 5
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable. A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component. A pipeline component is a self-contained set of user code, packaged as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Red Discord Bot

    Red Discord Bot

    A multi-function Discord bot

    Red is a fully modular bot, meaning all features and commands can be enabled/disabled to your liking, making it completely customizable. This is a self-hosted bot, meaning you will need to host and maintain your own instance. You can turn Red into an admin bot, music bot, trivia bot, new best friend or all of these together! CustomCommands allows you to create simple commands for your bot without requiring you to code your own cog for Red. If the command you attempt to create shares a name...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Surya

    Surya

    Implementation of the Surya Foundation Model for Heliophysics

    Surya is an open‑source, AI‑based foundation model for heliophysics developed collaboratively by NASA (via the IMPACT AI team) and IBM. Named after the Sanskrit word for “sun,” Surya is trained on nine years of high‑resolution solar imagery from NASA’s Solar Dynamics Observatory (SDO). It is designed to forecast solar phenomena—such as flares, solar wind, irradiance, and active region behavior—by predicting future solar images with a sophisticated long–short vision transformer architecture,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 10
    Dia

    Dia

    A TTS model capable of generating ultra-realistic dialogue

    Dia is a neural text-to-speech model designed specifically for generating ultra-realistic dialogue in a single pass. Instead of focusing on isolated sentences or flat narration, it is optimized for conversational audio, complete with natural turn-taking, prosody, and pacing. The model can be conditioned on a reference audio sample, allowing you to control emotion, tone, and other stylistic aspects of the speech. It can also produce nonverbal vocalizations like laughter, coughs, clearing the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    verl

    verl

    Volcano Engine Reinforcement Learning for LLMs

    VERL is a reinforcement-learning–oriented toolkit designed to train and align modern AI systems, from language models to decision-making agents. It brings together supervised fine-tuning, preference modeling, and online RL into one coherent training stack so teams can move from raw data to aligned policies with minimal glue code. The library focuses on scalability and efficiency, offering distributed training loops, mixed precision, and replay/buffering utilities that keep accelerators busy....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    ChatGPT Retrieval Plugin

    ChatGPT Retrieval Plugin

    The ChatGPT Retrieval Plugin lets you easily find personal documents

    The chatgpt-retrieval-plugin repository implements a semantic retrieval backend that lets ChatGPT (or GPT-powered tools) access private or organizational documents in natural language by combining vector search, embedding models, and plugin infrastructure. It can serve as a custom GPT plugin or function-calling backend so that a chat session can “look up” relevant documents based on user queries, inject those results into context, and respond more knowledgeably about a private knowledge...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    NeuralProphet bridges the gap between traditional time-series models and deep learning methods. It's based on PyTorch and can be installed using pip. A Neural Network based Time-Series model, inspired by Facebook Prophet and AR-Net, built on PyTorch. You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date. Docstrings should be reliable, please refer to those when in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    DreamO

    DreamO

    A Unified Framework for Image Customization

    DreamO is a unified, open-source framework from ByteDance for advanced image customization and generation that consolidates multiple “image manipulation” tasks into a single system, rather than requiring separate specialized models. Built on a diffusion-transformer (DiT) backbone, it supports a diverse set of tasks — including identity preservation, virtual “try-on” (e.g. clothing, accessories), style transfer, IP adaptation (objects/characters), and layout/condition-aware customizations —...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    FlowLens MCP Server is an open-source tool designed to give AI-powered coding agents (like Claude Code, Cursor, GitHub Copilot / Codex, and others) full, replayable browser context to dramatically improve debugging, bug reporting, and regression testing for web applications. It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PromptTools

    PromptTools

    Open-source tools for prompt testing and experimentation

    Welcome to prompttools created by Hegel AI! This repo offers a set of open-source, self-hostable tools for experimenting with, testing, and evaluating LLMs, vector databases, and prompts. The core idea is to enable developers to evaluate using familiar interfaces like code, notebooks, and a local playground.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    1D Visual Tokenization and Generation

    1D Visual Tokenization and Generation

    This repo contains the code for 1D tokenizer and generator

    The 1D Visual Tokenization and Generation project from ByteDance introduces a novel “one-dimensional” tokenizer designed for images: instead of representing images with large grids of 2D tokens (as in many prior generative/image-modeling systems), it compresses images into as few as 32 discrete tokens (or more, optionally) — thereby achieving a very compact, efficient representation that drastically speeds up generation and reconstruction while retaining strong fidelity. This compact...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    UNO

    UNO

    A Universal Customization Method for Single and Multi Conditioning

    UNO is a project by ByteDance introduced in 2025, titled “A Universal Customization Method for Both Single and Multi-Subject Conditioning.” It suggests a framework for image (or more general generative) modeling where the model can be conditioned either on a single subject or multiple subjects — which may correspond to generating or customizing images featuring specific people, styles, or objects, possibly with fine-grained control over subject identity or composition. Because the project is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    DataFrame

    DataFrame

    C++ DataFrame for statistical, Financial, and ML analysis

    This is a C++ analytical library designed for data analysis similar to libraries in Python and R. For example, you would compare this to Pandas, R data.frame, or Polars. You can slice the data in many different ways. You can join, merge, and group-by the data. You can run various statistical, summarization, financial, and ML algorithms on the data. You can add your custom algorithms easily. You can multi-column sort, custom pick, and delete the data. DataFrame also includes a large...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Learn AI Engineering

    Learn AI Engineering

    Learn AI and LLMs from scratch using free resources

    Learn AI Engineering is a learning path for AI engineering that consolidates high-quality, free resources across the full stack: math, Python foundations, machine learning, deep learning, LLMs, agents, tooling, and deployment. Rather than a loose bookmark list, it organizes topics into a progression so learners can start from fundamentals and move toward practical, production-oriented skills. It mixes courses, articles, code labs, and videos, emphasizing materials that teach both concepts...
    Downloads: 0 This Week
    Last Update:
    See Project