Showing 3 open source projects for "using"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    tidytext

    tidytext

    Text mining using tidy tools

    tidytext brings tidy data principles to text mining by converting text into a tidy data frame format. It provides tools for tokenization, sentiment analysis, n‑gram creation, and term‑document matrices, enabling interoperability with dplyr, ggplot2, and other tidyverse workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    mlr3

    mlr3

    mlr3: Machine Learning in R - next generation

    mlr3 is a modern, object-oriented R framework for machine learning. It provides core abstractions (tasks, learners, resamplings, measures, pipelines) implemented using R6 classes, enabling extensible, composable machine learning workflows. It focuses on clean design, scalability (large datasets), and integration into the wider R ecosystem via extension packages. Users can do classification, regression, survival analysis, clustering, hyperparameter tuning, benchmarking etc., often via companion packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    OmicSelector

    OmicSelector

    Feature selection and deep learning modeling for omic biomarker study

    ...It was initially developed for miRNA-seq (small RNA, smRNA-seq; hence the name was miRNAselector), RNA-seq and qPCR, but can be applied for every problem where numeric features should be selected to counteract overfitting of the models. Using our tool, you can choose features, like miRNAs, with the most significant diagnostic potential (based on the results of miRNA-seq, for validation in qPCR experiments).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next