Showing 100 open source projects for "visual%20scraper"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Dominate AI Search Results Icon
    Dominate AI Search Results

    Generative Al is shaping brand discovery. AthenaHQ ensures your brand leads the conversation.

    AthenaHQ is a cutting-edge platform for Generative Engine Optimization (GEO), designed to help brands optimize their visibility and performance across AI-driven search platforms like ChatGPT, Google AI, and more.
    Learn More
  • 1
    1D Visual Tokenization and Generation

    1D Visual Tokenization and Generation

    This repo contains the code for 1D tokenizer and generator

    The 1D Visual Tokenization and Generation project from ByteDance introduces a novel “one-dimensional” tokenizer designed for images: instead of representing images with large grids of 2D tokens (as in many prior generative/image-modeling systems), it compresses images into as few as 32 discrete tokens (or more, optionally) — thereby achieving a very compact, efficient representation that drastically speeds up generation and reconstruction while retaining strong fidelity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. ...
    Downloads: 132 This Week
    Last Update:
    See Project
  • 3
    R1-V

    R1-V

    Witness the aha moment of VLM with less than $3

    R1-V is an initiative aimed at enhancing the generalization capabilities of Vision-Language Models (VLMs) through Reinforcement Learning in Visual Reasoning (RLVR). The project focuses on building a comprehensive framework that emphasizes algorithm enhancement, efficiency optimization, and task diversity to achieve general vision-language intelligence and visual/GUI agents. The team's long-term goal is to contribute impactful open-source research in this domain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ComfyUI-LTXVideo

    ComfyUI-LTXVideo

    LTX-Video Support for ComfyUI

    ComfyUI-LTXVideo is a bridge between ComfyUI’s node-based generative workflow environment and the LTX-Video multimedia processing framework, enabling creators to orchestrate complex video tasks within a visual graph paradigm. Instead of writing code to apply effects, transitions, edits, and data flows, users can assemble nodes that represent video inputs, transformations, and outputs, letting them prototype and automate video production pipelines visually. This integration empowers non-programmers and rapid-iteration teams to harness the performance of LTX-Video while maintaining the clarity and flexibility of a dataflow graph model. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Simplify Purchasing For Your Business Icon
    Simplify Purchasing For Your Business

    Manage what you buy and how you buy it with Order.co, so you have control over your time and money spent.

    Simplify every aspect of buying for your business in Order.co. From sourcing products to scaling purchasing across locations to automating your AP and approvals workstreams, Order.co is the platform of choice for growing businesses.
    Learn More
  • 5
    Qwen-Image-Layered

    Qwen-Image-Layered

    Qwen-Image-Layered: Layered Decomposition for Inherent Editablity

    Qwen-Image-Layered is an extension of the Qwen series of multimodal models that introduces layered image understanding, enabling the model to reason about hierarchical visual structures — such as separating foreground, background, objects, and contextual layers within an image. This architecture allows richer semantic interpretation, enabling use cases such as scene decomposition, object-level editing, layered captioning, and more fine-grained multimodal reasoning than with flat image encodings alone. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 6
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    LLaVA

    LLaVA

    Visual Instruction Tuning: Large Language-and-Vision Assistant

    Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Qwen-VL

    Qwen-VL

    Chat & pretrained large vision language model

    Qwen-VL is Alibaba Cloud’s vision-language large model family, designed to integrate visual and linguistic modalities. It accepts image inputs (with optional bounding boxes) and text, and produces text (and sometimes bounding boxes) as output. The model variants (VL-Plus, VL-Max, etc.) have been upgraded for better visual reasoning, text recognition from images, fine-grained understanding, and support for high image resolutions / extreme aspect ratios.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Collect! is a highly configurable debt collection software Icon
    Collect! is a highly configurable debt collection software

    Everything that matters to debt collection, all in one solution.

    The flexible & scalable debt collection software built to automate your workflow. From startup to enterprise, we have the solution for you.
    Learn More
  • 10
    Self-Operating Computer

    Self-Operating Computer

    A framework to enable multimodal models to operate a computer

    ...Notably, it was the first known project to implement a multimodal model capable of viewing and controlling a computer screen. The framework supports features like Optical Character Recognition (OCR) and Set-of-Mark (SoM) prompting to enhance visual grounding capabilities. It is designed to be compatible with macOS, Windows, and Linux (with X server installed), and is released under the MIT license.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 11
    LlamaParse

    LlamaParse

    Parse files for optimal RAG

    LlamaParse is a GenAI-native document parser that can parse complex document data for any downstream LLM use case (RAG, agents). Load in 160+ data sources and data formats, from unstructured, and semi-structured, to structured data (API's, PDFs, documents, SQL, etc.) Store and index your data for different use cases. Integrate with 40+ vector stores, document stores, graph stores, and SQL db providers.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    ...The repository documents model variants, showcases head-to-head numbers against known baselines, and explains how the encoder integrates with common LLM backbones. Apple’s research brief frames FastVLM as targeting real-time or latency-sensitive scenarios, where lowering visual token pressure is critical to interactive UX. In short, it’s a practical recipe to make VLMs fast without exotic token-selection heuristics.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    HunyuanWorld 1.0

    HunyuanWorld 1.0

    Generating Immersive, Explorable, and Interactive 3D Worlds

    ...The architecture integrates panoramic proxy generation, semantic layering, and hierarchical 3D reconstruction to produce high-quality scene-scale 3D worlds from both text and images. HunyuanWorld-1.0 surpasses existing open-source methods in visual quality and geometric consistency, demonstrated by superior scores in BRISQUE, NIQE, Q-Align, and CLIP metrics.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 14
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository includes model weights (or pointers to them), evaluation metrics on standard vision + language benchmarks, and configuration or architecture files. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Wan2.1

    Wan2.1

    Wan2.1: Open and Advanced Large-Scale Video Generative Model

    Wan2.1 is a foundational open-source large-scale video generative model developed by the Wan team, providing high-quality video generation from text and images. It employs advanced diffusion-based architectures to produce coherent, temporally consistent videos with realistic motion and visual fidelity. Wan2.1 focuses on efficient video synthesis while maintaining rich semantic and aesthetic detail, enabling applications in content creation, entertainment, and research. The model supports text-to-video and image-to-video generation tasks with flexible resolution options suitable for various GPU hardware configurations. ...
    Downloads: 62 This Week
    Last Update:
    See Project
  • 16
    ManiSkill

    ManiSkill

    SAPIEN Manipulation Skill Framework

    ...Developed by Hao Su Lab, it focuses on robotic manipulation with diverse, high-quality 3D tasks designed to challenge perception, control, and planning in robotics. ManiSkill provides both low-level control and visual observation spaces for realistic learning scenarios.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    CogView4

    CogView4

    CogView4, CogView3-Plus and CogView3(ECCV 2024)

    CogView4 is the latest generation in the CogView series of vision-language foundation models, developed as a bilingual (Chinese and English) open-source system for high-quality image understanding and generation. Built on top of the GLM framework, it supports multimodal tasks including text-to-image synthesis, image captioning, and visual reasoning. Compared to previous CogView versions, CogView4 introduces architectural upgrades, improved training pipelines, and larger-scale datasets, enabling stronger alignment between textual prompts and generated visual content. It emphasizes bilingual usability, making it well-suited for cross-lingual multimodal applications. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    GLM-4.5V

    GLM-4.5V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.5V is the preceding iteration in the GLM-V series that laid much of the groundwork for general multimodal reasoning and vision-language understanding. It embodies the design philosophy of mixing visual and textual modalities into a unified model capable of general-purpose reasoning, content understanding, and generation, while already supporting a wide variety of tasks: from image captioning and visual question answering to content recognition, GUI-based agents, video understanding, and long-document interpretation. GLM-4.5V emerged from a training framework that leverages scalable reinforcement learning (with curriculum sampling) to boost performance across tasks ranging from STEM problem solving to long-context reasoning, giving it broad applicability beyond narrow benchmarks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo presents the vision-language pipeline, model assets, and paper resources that show how Ferret answers questions, follows instructions, and returns grounded outputs rather than just text. In practice, this enables tasks like “find that small red icon next to the chart and describe it” where both the linguistic reference and the visual region are ambiguous without fine spatial reasoning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a momentum-updated encoder, allowing efficient contrastive learning across large batches. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DINOv3

    DINOv3

    Reference PyTorch implementation and models for DINOv3

    DINOv3 is the third-generation iteration of Meta’s self-supervised visual representation learning framework, building upon the ideas from DINO and DINOv2. It continues the paradigm of learning strong image representations without labels using teacher–student distillation, but introduces a simplified and more scalable training recipe that performs well across datasets and architectures. DINOv3 removes the need for complex augmentations or momentum encoders, streamlining the pipeline while maintaining or improving feature quality. ...
    Downloads: 20 This Week
    Last Update:
    See Project
  • 22
    FramePack

    FramePack

    Lets make video diffusion practical

    FramePack explores compact representations for sequences of image frames, targeting tasks where many near-duplicate frames carry redundant information. The idea is to “pack” frames by detecting shared structure and storing differences efficiently, which can accelerate training or inference on video-like data. By reducing I/O and memory bandwidth, datasets become lighter to load while models still see the essential temporal variation. The repository demonstrates both packing and unpacking...
    Downloads: 19 This Week
    Last Update:
    See Project
  • 23
    HunyuanVideo-Foley

    HunyuanVideo-Foley

    Multimodal Diffusion with Representation Alignment

    HunyuanVideo-Foley is a multimodal diffusion model from Tencent Hunyuan for high-fidelity Foley (sound effects) audio generation synchronized to video scenes. It is designed to generate audio that matches both visual content and textual semantic cues, for use in video production, film, advertising, games, etc. The model architecture aligns audio, video, and text representations to produce realistic synchronized soundtracks. Produces high-quality 48 kHz audio output suitable for professional use. Hybrid architecture combining multimodal transformer blocks and unimodal refinement blocks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    LatentSync

    LatentSync

    Taming Stable Diffusion for Lip Sync

    ...The system leverages a U-Net diffusion backbone, with cross-attention of audio embeddings (via an audio encoder) and reference video frames to guide generation, and applies a set of loss functions (temporal, perceptual, sync-net based) to enforce lip-sync accuracy, visual fidelity, and temporal consistency. Over versions, LatentSync has improved temporal stability and lowered resource requirements — making inference more practical (e.g. 8 GB VRAM for earlier versions, somewhat higher for latest models).
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    Screenshot to Code

    Screenshot to Code

    A neural network that transforms a design mock-up into static websites

    Screenshot-to-code is a tool or prototype that attempts to convert UI screenshots (e.g., of mobile or web UIs) into code representations, likely generating layouts, HTML, CSS, or markup from image inputs. It is part of a research/proof-of-concept domain in UI automation and image-to-UI code generation. Mapping visual design to code constructs. Code/UI layout (HTML, CSS, or markup). Examples/demo scripts showing “image UI code”.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • Next