Showing 101 open source projects for "visual"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    1D Visual Tokenization and Generation

    1D Visual Tokenization and Generation

    This repo contains the code for 1D tokenizer and generator

    The 1D Visual Tokenization and Generation project from ByteDance introduces a novel “one-dimensional” tokenizer designed for images: instead of representing images with large grids of 2D tokens (as in many prior generative/image-modeling systems), it compresses images into as few as 32 discrete tokens (or more, optionally) — thereby achieving a very compact, efficient representation that drastically speeds up generation and reconstruction while retaining strong fidelity.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SAM 3

    SAM 3

    Code for running inference and finetuning with SAM 3 model

    SAM 3 (Segment Anything Model 3) is a unified foundation model for promptable segmentation in both images and videos, capable of detecting, segmenting, and tracking objects. It accepts both text prompts (open-vocabulary concepts like “red car” or “goalkeeper in white”) and visual prompts (points, boxes, masks) and returns high-quality masks, boxes, and scores for the requested concepts. Compared with SAM 2, SAM 3 introduces the ability to exhaustively segment all instances of an open-vocabulary concept specified by a short phrase or exemplars, scaling to a vastly larger set of categories than traditional closed-set models. ...
    Downloads: 118 This Week
    Last Update:
    See Project
  • 3
    ComfyUI-LTXVideo

    ComfyUI-LTXVideo

    LTX-Video Support for ComfyUI

    ComfyUI-LTXVideo is a bridge between ComfyUI’s node-based generative workflow environment and the LTX-Video multimedia processing framework, enabling creators to orchestrate complex video tasks within a visual graph paradigm. Instead of writing code to apply effects, transitions, edits, and data flows, users can assemble nodes that represent video inputs, transformations, and outputs, letting them prototype and automate video production pipelines visually. This integration empowers non-programmers and rapid-iteration teams to harness the performance of LTX-Video while maintaining the clarity and flexibility of a dataflow graph model. ...
    Downloads: 11 This Week
    Last Update:
    See Project
  • 4
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations.
    Downloads: 4 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Risk Analytics - Supplier Intelligence Icon
    Dun and Bradstreet Risk Analytics - Supplier Intelligence

    Use an AI-powered solution for supply and compliance teams who want to mitigate costly supplier risks intelligently.

    Risk, procurement, and compliance teams across the globe are under pressure to deal with geopolitical and business risks. Third-party risk exposure is impacted by rapidly scaling complexity in domestic and cross-border businesses, along with complicated and diverse regulations. It is extremely important for companies to proactively manage their third-party relationships. An AI-powered solution to mitigate and monitor counterparty risks on a continuous basis, this cutting-edge platform is powered by D&B’s Data Cloud with 520M+ Global Business Records and 2B+ yearly updates for third-party risk insights. With high-risk procurement alerts and multibillion match points, D&B Risk Analytics leverages best-in-class risk data to help drive informed decisions. Perform quick and comprehensive screening, using intelligent workflows. Receive ongoing alerts of key business indicators and disruptions.
    Learn More
  • 5
    R1-V

    R1-V

    Witness the aha moment of VLM with less than $3

    R1-V is an initiative aimed at enhancing the generalization capabilities of Vision-Language Models (VLMs) through Reinforcement Learning in Visual Reasoning (RLVR). The project focuses on building a comprehensive framework that emphasizes algorithm enhancement, efficiency optimization, and task diversity to achieve general vision-language intelligence and visual/GUI agents. The team's long-term goal is to contribute impactful open-source research in this domain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Qwen-Image-Layered

    Qwen-Image-Layered

    Qwen-Image-Layered: Layered Decomposition for Inherent Editablity

    Qwen-Image-Layered is an extension of the Qwen series of multimodal models that introduces layered image understanding, enabling the model to reason about hierarchical visual structures — such as separating foreground, background, objects, and contextual layers within an image. This architecture allows richer semantic interpretation, enabling use cases such as scene decomposition, object-level editing, layered captioning, and more fine-grained multimodal reasoning than with flat image encodings alone. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 7
    CogVLM

    CogVLM

    A state-of-the-art open visual language model

    CogVLM is an open-source visual–language model suite—and its GUI-oriented sibling CogAgent—aimed at image understanding, grounding, and multi-turn dialogue, with optional agent actions on real UI screenshots. The flagship CogVLM-17B combines ~10B visual parameters with ~7B language parameters and supports 490×490 inputs; CogAgent-18B extends this to 1120×1120 and adds plan/next-action outputs plus grounded operation coordinates for GUI tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    LLaVA

    LLaVA

    Visual Instruction Tuning: Large Language-and-Vision Assistant

    Visual instruction tuning towards large language and vision models with GPT-4 level capabilities.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Qwen-VL

    Qwen-VL

    Chat & pretrained large vision language model

    Qwen-VL is Alibaba Cloud’s vision-language large model family, designed to integrate visual and linguistic modalities. It accepts image inputs (with optional bounding boxes) and text, and produces text (and sometimes bounding boxes) as output. The model variants (VL-Plus, VL-Max, etc.) have been upgraded for better visual reasoning, text recognition from images, fine-grained understanding, and support for high image resolutions / extreme aspect ratios.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 10
    Moondream

    Moondream

    Tiny vision language model

    ...It serves as both a playground for the author’s artistic curiosity and a resource for other creative coders interested in generative art techniques. The repository may include shaders, canvas/WebGL code, visual demos, and utilities that demonstrate how mathematical functions or noise patterns can be harnessed for compelling visuals.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    LlamaParse

    LlamaParse

    Parse files for optimal RAG

    LlamaParse is a GenAI-native document parser that can parse complex document data for any downstream LLM use case (RAG, agents). Load in 160+ data sources and data formats, from unstructured, and semi-structured, to structured data (API's, PDFs, documents, SQL, etc.) Store and index your data for different use cases. Integrate with 40+ vector stores, document stores, graph stores, and SQL db providers.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    ...The repository documents model variants, showcases head-to-head numbers against known baselines, and explains how the encoder integrates with common LLM backbones. Apple’s research brief frames FastVLM as targeting real-time or latency-sensitive scenarios, where lowering visual token pressure is critical to interactive UX. In short, it’s a practical recipe to make VLMs fast without exotic token-selection heuristics.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Self-Operating Computer

    Self-Operating Computer

    A framework to enable multimodal models to operate a computer

    ...Notably, it was the first known project to implement a multimodal model capable of viewing and controlling a computer screen. The framework supports features like Optical Character Recognition (OCR) and Set-of-Mark (SoM) prompting to enhance visual grounding capabilities. It is designed to be compatible with macOS, Windows, and Linux (with X server installed), and is released under the MIT license.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    Screenshot to Code

    Screenshot to Code

    A neural network that transforms a design mock-up into static websites

    Screenshot-to-code is a tool or prototype that attempts to convert UI screenshots (e.g., of mobile or web UIs) into code representations, likely generating layouts, HTML, CSS, or markup from image inputs. It is part of a research/proof-of-concept domain in UI automation and image-to-UI code generation. Mapping visual design to code constructs. Code/UI layout (HTML, CSS, or markup). Examples/demo scripts showing “image UI code”.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    HunyuanWorld 1.0

    HunyuanWorld 1.0

    Generating Immersive, Explorable, and Interactive 3D Worlds

    ...The architecture integrates panoramic proxy generation, semantic layering, and hierarchical 3D reconstruction to produce high-quality scene-scale 3D worlds from both text and images. HunyuanWorld-1.0 surpasses existing open-source methods in visual quality and geometric consistency, demonstrated by superior scores in BRISQUE, NIQE, Q-Align, and CLIP metrics.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 16
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal integration strategies that influenced modern architectures like SlowFast and X3D.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    LatentSync

    LatentSync

    Taming Stable Diffusion for Lip Sync

    ...The system leverages a U-Net diffusion backbone, with cross-attention of audio embeddings (via an audio encoder) and reference video frames to guide generation, and applies a set of loss functions (temporal, perceptual, sync-net based) to enforce lip-sync accuracy, visual fidelity, and temporal consistency. Over versions, LatentSync has improved temporal stability and lowered resource requirements — making inference more practical (e.g. 8 GB VRAM for earlier versions, somewhat higher for latest models).
    Downloads: 9 This Week
    Last Update:
    See Project
  • 18
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository includes model weights (or pointers to them), evaluation metrics on standard vision + language benchmarks, and configuration or architecture files. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    CogView4

    CogView4

    CogView4, CogView3-Plus and CogView3(ECCV 2024)

    CogView4 is the latest generation in the CogView series of vision-language foundation models, developed as a bilingual (Chinese and English) open-source system for high-quality image understanding and generation. Built on top of the GLM framework, it supports multimodal tasks including text-to-image synthesis, image captioning, and visual reasoning. Compared to previous CogView versions, CogView4 introduces architectural upgrades, improved training pipelines, and larger-scale datasets, enabling stronger alignment between textual prompts and generated visual content. It emphasizes bilingual usability, making it well-suited for cross-lingual multimodal applications. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 20
    ManiSkill

    ManiSkill

    SAPIEN Manipulation Skill Framework

    ...Developed by Hao Su Lab, it focuses on robotic manipulation with diverse, high-quality 3D tasks designed to challenge perception, control, and planning in robotics. ManiSkill provides both low-level control and visual observation spaces for realistic learning scenarios.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support for dynamic scene handling, dense point cloud export, video-based reconstruction (1000+ frames), and integration with Gaussian Splatting pipelines. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    Wan2.1

    Wan2.1

    Wan2.1: Open and Advanced Large-Scale Video Generative Model

    Wan2.1 is a foundational open-source large-scale video generative model developed by the Wan team, providing high-quality video generation from text and images. It employs advanced diffusion-based architectures to produce coherent, temporally consistent videos with realistic motion and visual fidelity. Wan2.1 focuses on efficient video synthesis while maintaining rich semantic and aesthetic detail, enabling applications in content creation, entertainment, and research. The model supports text-to-video and image-to-video generation tasks with flexible resolution options suitable for various GPU hardware configurations. ...
    Downloads: 58 This Week
    Last Update:
    See Project
  • 23
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo presents the vision-language pipeline, model assets, and paper resources that show how Ferret answers questions, follows instructions, and returns grounded outputs rather than just text. In practice, this enables tasks like “find that small red icon next to the chart and describe it” where both the linguistic reference and the visual region are ambiguous without fine spatial reasoning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a momentum-updated encoder, allowing efficient contrastive learning across large batches. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    GLM-4.5V

    GLM-4.5V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.5V is the preceding iteration in the GLM-V series that laid much of the groundwork for general multimodal reasoning and vision-language understanding. It embodies the design philosophy of mixing visual and textual modalities into a unified model capable of general-purpose reasoning, content understanding, and generation, while already supporting a wide variety of tasks: from image captioning and visual question answering to content recognition, GUI-based agents, video understanding, and long-document interpretation. GLM-4.5V emerged from a training framework that leverages scalable reinforcement learning (with curriculum sampling) to boost performance across tasks ranging from STEM problem solving to long-context reasoning, giving it broad applicability beyond narrow benchmarks. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next