Showing 119 open source projects for "system data"

View related business solutions
  • Run Any Workload on Compute Engine VMs Icon
    Run Any Workload on Compute Engine VMs

    From dev environments to AI training, choose preset or custom VMs with 1–96 vCPUs and industry-leading 99.95% uptime SLA.

    Compute Engine delivers high-performance virtual machines for web apps, databases, containers, and AI workloads. Choose from general-purpose, compute-optimized, or GPU/TPU-accelerated machine types—or build custom VMs to match your exact specs. With live migration and automatic failover, your workloads stay online. New customers get $300 in free credits.
    Try Compute Engine
  • Easily Host LLMs and Web Apps on Cloud Run Icon
    Easily Host LLMs and Web Apps on Cloud Run

    Run everything from popular models with on-demand NVIDIA L4 GPUs to web apps without infrastructure management.

    Run frontend and backend services, batch jobs, host LLMs, and queue processing workloads without the need to manage infrastructure. Cloud Run gives you on-demand GPU access for hosting LLMs and running real-time AI—with 5-second cold starts and automatic scale-to-zero so you only pay for actual usage. New customers get $300 in free credit to start.
    Try Cloud Run Free
  • 1
    Dash Data Agent

    Dash Data Agent

    Self-learning data agent that grounds its answers in layers of content

    ...The system then executes those queries against a database and interprets the results, returning human-friendly insights not just raw rows, while learning from errors and successes to reduce repeated mistakes.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative)...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    GPT-SoVITS

    GPT-SoVITS

    1 min voice data can also be used to train a good TTS model

    GPT‑SoVITS is a state-of-the-art voice conversion and TTS system that enables zero‑shot and few‑shot synthesis based on a short vocal sample (e.g., 5 seconds). It supports cross‑lingual speech synthesis across English, Chinese, Japanese, Korean, Cantonese, and more. It's powered by VITS architecture enhanced for few‑sample adaptation and real‑time usability.
    Downloads: 49 This Week
    Last Update:
    See Project
  • Build on Google Cloud with $300 in Free Credit Icon
    Build on Google Cloud with $300 in Free Credit

    New to Google Cloud? Get $300 in free credit to explore Compute Engine, BigQuery, Cloud Run, Vertex AI, and 150+ other products.

    Start your next project with $300 in free Google Cloud credit. Spin up VMs, run containers, query exabytes in BigQuery, or build AI apps with Vertex AI and Gemini. Once your credits are used, keep building with 20+ products with free monthly usage, including Compute Engine, Cloud Storage, GKE, and Cloud Run functions. Sign up to start building right away.
    Start Free Trial
  • 5
    MemOS

    MemOS

    AI memory OS for LLM and Agent systems

    MemOS is an experimental operating system and runtime built around the concept of memory-centric computing, where memory objects are first-class citizens and program execution is organized around efficient, persistent memory access rather than traditional process and file system boundaries. The project explores rethinking system abstractions by tightly coupling computation with memory objects so that programs can operate on large datasets without expensive serialization or context switching. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    PySyft

    PySyft

    Data science on data without acquiring a copy

    ...It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data without first putting it all in one (central) place. The Syft ecosystem seeks to change this system, allowing you to write software which can compute over information you do not own on machines you do not have (total) control over. This not only includes servers in the cloud, but also personal desktops, laptops, mobile phones, websites, and edge devices. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 7
    PrivateGPT

    PrivateGPT

    Interact with your documents using the power of GPT

    PrivateGPT is a production-ready, privacy-first AI system that allows querying of uploaded documents using LLMs, operating completely offline in your own environment. It provides contextual generative AI capabilities without sending data externally. Now maintained under Zylon.ai with enterprise deployment options (air gapped, cloud, or on-prem).
    Downloads: 25 This Week
    Last Update:
    See Project
  • 8
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling accurate modeling of proteins, ligands, and covalent modifications. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • 10
    Unstructured.IO

    Unstructured.IO

    Open source libraries and APIs to build custom preprocessing pipelines

    The unstructured library provides open-source components for ingesting and pre-processing images and text documents, such as PDFs, HTML, Word docs, and many more. The use cases of unstructured revolve around streamlining and optimizing the data processing workflow for LLMs. unstructured modular bricks and connectors form a cohesive system that simplifies data ingestion and pre-processing, making it adaptable to different platforms and is efficient in transforming unstructured data into structured outputs.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 11
    GraphRAG

    GraphRAG

    A modular graph-based Retrieval-Augmented Generation (RAG) system

    The GraphRAG project is a data pipeline and transformation suite that is designed to extract meaningful, structured data from unstructured text using the power of LLMs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    LangCheck

    LangCheck

    Simple, Pythonic building blocks to evaluate LLM applications

    Simple, Pythonic building blocks to evaluate LLM applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Label Sleuth

    Label Sleuth

    Open source no-code system for text annotation and building of text

    An open-source no-code system for text annotation and building text classifiers. No AI knowledge needed. From task definition to working model in just a few hours! While domain experts label their data, Label Sleuth automatically trains in the background-appropriate machine learning models. To avoid wasted labeling effort, Label Sleuth employs active learning techniques to guide the user in what they should be labeled next.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 15
    BettaFish

    BettaFish

    Public opinion analysis system

    BettaFish is an open-source, multi-agent public opinion analysis system built to automate the collection, deep analysis, and reporting of social media data at scale through conversational queries. It uses a modular architecture of specialized agents that collaborate to crawl mainstream platforms, extract multimodal content like text and short video, and synthesize insights through both statistical and large language model techniques.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Superlinked

    Superlinked

    Superlinked is a Python framework for AI Engineers

    Superlinked is a Python framework designed for AI engineers to build high-performance search and recommendation applications that combine structured and unstructured data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Matrix

    Matrix

    Multi-Agent daTa geneRation Infra and eXperimentation framework

    Matrix is a distributed, large-scale engine for multi-agent synthetic data generation and experiments: it provides the infrastructure to run thousands of “agentic” workflows concurrently (e.g. multiple LLMs interacting, reasoning, generating content, data-processing pipelines) by leveraging distributed computing (like Ray + cluster management). The idea is to treat data generation as a “data-to-data” transformation: each input item defines a task, and the runtime orchestrates asynchronous,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Genv

    Genv

    GPU environment management and cluster orchestration

    Genv is an open-source environment and cluster management system for GPUs. Genv lets you easily control, configure, monitor and enforce the GPU resources that you are using in a GPU machine or cluster. It is intended to ease up the process of GPU allocation for data scientists without code changes.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    HunyuanWorld-Voyager

    HunyuanWorld-Voyager

    RGBD video generation model conditioned on camera input

    HunyuanWorld-Voyager is a next-generation video diffusion framework developed by Tencent-Hunyuan for generating world-consistent 3D scene videos from a single input image. By leveraging user-defined camera paths, it enables immersive scene exploration and supports controllable video synthesis with high realism. The system jointly produces aligned RGB and depth video sequences, making it directly applicable to 3D reconstruction tasks. At its core, Voyager integrates a world-consistent video diffusion model with an efficient long-range world exploration engine powered by auto-regressive inference. To support training, the team built a scalable data engine that automatically curates large video datasets with camera pose estimation and metric depth prediction. ...
    Downloads: 26 This Week
    Last Update:
    See Project
  • 20
    Acontext

    Acontext

    Context data platform for building observable, self-learning AI agents

    Acontext is a cloud-native context data platform designed to support the development and operation of advanced AI agents. It provides a unified system to store and manage contexts, multimodal messages, artifacts, and task workflows, enabling developers to engineer context effectively for their agent products. The platform observes agent tasks and user feedback in real time, offering robust observability into workflows and helping teams understand how agents perform over time. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 22
    LangKit

    LangKit

    An open-source toolkit for monitoring Language Learning Models (LLMs)

    LangKit is an open-source text metrics toolkit for monitoring language models. It offers an array of methods for extracting relevant signals from the input and/or output text, which are compatible with the open-source data logging library whylogs. Productionizing language models, including LLMs, comes with a range of risks due to the infinite amount of input combinations, which can elicit an infinite amount of outputs. The unstructured nature of text poses a challenge in the ML observability...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    AgentForge

    AgentForge

    Extensible AGI Framework

    AgentForge is a framework for creating and deploying AI agents that can perform autonomous decision-making and task execution. It enables developers to define agent behaviors, train models, and integrate AI-powered automation into various applications.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 25
    OpenLLMetry

    OpenLLMetry

    Open-source observability for your LLM application

    The repo contains standard OpenTelemetry instrumentations for LLM providers and Vector DBs, as well as a Traceloop SDK that makes it easy to get started with OpenLLMetry, while still outputting standard OpenTelemetry data that can be connected to your observability stack. If you already have OpenTelemetry instrumented, you can just add any of our instrumentations directly.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next
MongoDB Logo MongoDB
Gen AI apps are built with MongoDB Atlas
Atlas offers built-in vector search and global availability across 125+ regions. Start building AI apps faster, all in one place.
Try Free →