Showing 6 open source projects for "structural equation modeling"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    ...This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling accurate modeling of proteins, ligands, and covalent modifications. Users can perform local predictions via Docker containers, integrating AlphaFold 3’s inference process with provided JSON input configurations. The software includes flexible options for running both data preprocessing and GPU-accelerated inference, allowing users to adapt to available computational resources.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Protenix

    Protenix

    A trainable PyTorch reproduction of AlphaFold 3

    Protenix is an open-source, trainable PyTorch reimplementation of AlphaFold 3, developed by ByteDance with the goal of democratizing high-accuracy protein structure prediction for computational biology and drug-discovery research. Protenix provides a complete pipeline for turning protein sequences (with optional MSA / sequence alignment) or structural inputs (e.g. PDB/CIF) into full 3D atomic-level structure predictions. It supports both “full” models and lightweight variants such as “Protenix-Mini,” offering a trade-off between speed/compute cost and predictive accuracy — making structure prediction accessible even in resource-constrained environments. The project also includes support for constraints (e.g., specifying residue- or atom-level contact constraints, or pocket constraints) to guide predictions toward biologically or experimentally relevant conformations, which enhances its utility for tasks like modeling complexes, ligands, or antibody–antigen interactions.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    GNNPCSAFT

    GNNPCSAFT

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT app is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive. To install the GNNPCSAFT app, download the...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    GNNPCSAFT Web App

    GNNPCSAFT Web App

    Smart Thermodynamic Modeling with Graph Neural Networks

    The GNNPCSAFT Web App is an implementation of our project that focuses on using Graph Neural Networks (GNN) to estimate the pure-component parameters of the Equation of State PC-SAFT. We developed this app so the scientific community can access the model's results easily. In this app, the estimated pure-component parameters can be used to calculate thermodynamic properties and compare them with experimental data from the ThermoML Archive. More info on github repository.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 5
    AliceMind

    AliceMind

    ALIbaba's Collection of Encoder-decoders from MinD

    This repository provides pre-trained encoder-decoder models and its related optimization techniques developed by Alibaba's MinD (Machine IntelligeNce of Damo) Lab. Pre-trained models for natural language understanding (NLU). We extend BERT to a new model, StructBERT, by incorporating language structures into pre-training. Specifically, we pre-train StructBERT with two auxiliary tasks to make the most of the sequential order of words and sentences, which leverage language structures at the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Virtual Laboratory Environment

    Virtual Laboratory Environment

    A multi-modeling and simulation environment to study complex systems

    VLE is a multi-modeling and simulation environment to study complex dynamic systems. VLE is based on the discrete event specification DEVS. and it implements the DSDE formalism (A merge of Dynamic Structure DEVS, DSDEVS, with Parallel DEVS, PDEVS). VLE provides a complete set of C++ libraries, called VFL (VLE Foundation Libraries), to develop DEVS models, to gets results of simulations, to launch simulation on cluster.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next