Protenix
A trainable PyTorch reproduction of AlphaFold 3
Protenix is an open-source, trainable PyTorch reimplementation of AlphaFold 3, developed by ByteDance with the goal of democratizing high-accuracy protein structure prediction for computational biology and drug-discovery research. Protenix provides a complete pipeline for turning protein sequences (with optional MSA / sequence alignment) or structural inputs (e.g. PDB/CIF) into full 3D atomic-level structure predictions. It supports both “full” models and lightweight variants such as “Protenix-Mini,” offering a trade-off between speed/compute cost and predictive accuracy — making structure prediction accessible even in resource-constrained environments. The project also includes support for constraints (e.g., specifying residue- or atom-level contact constraints, or pocket constraints) to guide predictions toward biologically or experimentally relevant conformations, which enhances its utility for tasks like modeling complexes, ligands, or antibody–antigen interactions.