Showing 14 open source projects for "separation"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    Ultimate Vocal Remover (UVR5)

    Ultimate Vocal Remover (UVR5)

    GUI for a Vocal Remover that uses Deep Neural Networks

    This application uses state-of-the-art source separation models to remove vocals from audio files. UVR's core developers trained all of the models provided in this package (except for the Demucs v3 and v4 4-stem models).
    Downloads: 658 This Week
    Last Update:
    See Project
  • 2
    Voice-Pro

    Voice-Pro

    Comprehensive Gradio WebUI for audio processing

    Voice-Pro is the best gradio WebUI for transcription, translation and text-to-speech. It can be easily installed with one click. Create a virtual environment using Miniconda, running completely separate from the Windows system (fully portable). Supports real-time transcription and translation, as well as batch mode.
    Downloads: 44 This Week
    Last Update:
    See Project
  • 3
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    ChatGPT Clone

    ChatGPT Clone

    ChatGPT interface with better UI

    ...The goal is to replicate the core chat UX—message history, streaming tokens, code blocks, and system prompts—while letting you plug in different provider APIs or local models. It showcases a clean separation between the web client and the message orchestration layer so you can experiment with prompts, roles, and memory strategies. The project is useful for prototyping assistants, documentation bots, and internal developer tools without committing to a specific vendor or UI framework. Configuration is kept simple so newcomers can get a working chat in minutes and then dial in features like authentication or multi-model routing. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 5
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Agentex

    Agentex

    Open source codebase for Scale Agentex

    ...It also includes evaluation harnesses that capture success criteria and partial credit, plus traces you can inspect to understand where reasoning or tool use failed. The design encourages clean separation between experiment configuration and code, which makes sharing results or re-running baselines straightforward. Teams use it to progress from prototypes to production-ready agent behaviors by iterating on prompts, adding tools, and validating improvements with consistent metrics.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    NeMo Curator

    NeMo Curator

    Scalable data pre processing and curation toolkit for LLMs

    NeMo Curator is a Python library specifically designed for fast and scalable dataset preparation and curation for large language model (LLM) use-cases such as foundation model pretraining, domain-adaptive pretraining (DAPT), supervised fine-tuning (SFT) and paramter-efficient fine-tuning (PEFT). It greatly accelerates data curation by leveraging GPUs with Dask and RAPIDS, resulting in significant time savings. The library provides a customizable and modular interface, simplifying pipeline...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    ...SpeechBrain provides different models for speaker recognition, including X-vector, ECAPA-TDNN, PLDA, and contrastive learning. Spectral masking, spectral mapping, and time-domain enhancement are different methods already available within SpeechBrain. Separation methods such as Conv-TasNet, DualPath RNN, and SepFormer are implemented as well. SpeechBrain provides efficient and GPU-friendly speech augmentation pipelines and acoustic features extraction.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Asteroid

    Asteroid

    The PyTorch-based audio source separation toolkit for researchers

    The PyTorch-based audio source separation toolkit for researchers. Pytorch-based audio source separation toolkit that enables fast experimentation on common datasets. It comes with a source code thats supports a large range of datasets and architectures, and a set of recipes to reproduce some important papers. Building blocks are thought and designed to be seamlessly plugged together.
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 10
    Demucs

    Demucs

    Code for the paper Hybrid Spectrogram and Waveform Source Separation

    Demucs (Deep Extractor for Music Sources) is a deep-learning framework for music source separation—extracting individual instrument or vocal tracks from a mixed audio file. The system is based on a U-Net-like convolutional architecture combined with recurrent and transformer elements to capture both short-term and long-term temporal structure. It processes raw waveforms directly rather than spectrograms, allowing for higher-quality reconstruction and fewer artifacts in separated tracks. ...
    Downloads: 53 This Week
    Last Update:
    See Project
  • 11
    simpleaichat

    simpleaichat

    Python package for easily interfacing with chat apps

    ...It supports structured responses and validation patterns so your app can reliably parse model outputs instead of wrestling with brittle free-text parsing. The project encourages clean separation between system prompts, user messages, and tool outputs to keep conversations predictable. With convenience helpers for logging, environment configuration, and retries, it reduces the friction of moving from a quick experiment to a reliable internal tool.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Music Source Separation

    Music Source Separation

    Separate audio recordings into individual sources

    Music Source Separation is a PyTorch-based open-source implementation for the task of separating a music (or audio) recording into its constituent sources — for example isolating vocals, instruments, bass, accompaniment, or background from a mixed track. It aims to give users the ability to take any existing song and decompose it into separate stems (vocals, accompaniment, etc.), or to train custom separation models on their own datasets (e.g. for speech enhancement, instrument isolation, or other audio-separation tasks). ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SG2Im

    SG2Im

    Code for "Image Generation from Scene Graphs", Johnson et al, CVPR 201

    ...Instead of conditioning on free-form text alone, it leverages graph structure to control layout and interactions, generating scenes that respect constraints like “person left of dog” or “cup on table.” The pipeline typically predicts object layouts (bounding boxes and masks) from the graph, then renders a realistic image conditioned on those layouts. This separation lets the model reason about geometry and composition before committing to texture and color, improving spatial fidelity. The repository includes training code, datasets, and evaluation scripts so researchers can reproduce baselines and extend components such as the graph encoder or image generator. In practice, sg2im demonstrates how structured semantics can guide generative models to produce controllable, compositional imagery.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next