Showing 39 open source projects for "self code"

View related business solutions
  • Find Hidden Risks in Windows Task Scheduler Icon
    Find Hidden Risks in Windows Task Scheduler

    Free diagnostic script reveals configuration issues, error patterns, and security risks. Instant HTML report.

    Windows Task Scheduler might be hiding critical failures. Download the free JAMS diagnostic tool to uncover problems before they impact production—get a color-coded risk report with clear remediation steps in minutes.
    Download Free Tool
  • AI-generated apps that pass security review Icon
    AI-generated apps that pass security review

    Stop waiting on engineering. Build production-ready internal tools with AI—on your company data, in your cloud.

    Retool lets you generate dashboards, admin panels, and workflows directly on your data. Type something like “Build me a revenue dashboard on my Stripe data” and get a working app with security, permissions, and compliance built in from day one. Whether on our cloud or self-hosted, create the internal software your team needs without compromising enterprise standards or control.
    Try Retool free
  • 1
    Self-hosted AI Package

    Self-hosted AI Package

    Run all your local AI together in one package

    Self-hosted AI Package is an open-source Docker Compose-based starter kit that makes it easy to bootstrap a full local AI and low-code development environment with commonly used open tools, empowering developers to run LLMs and AI workflows entirely on their infrastructure. The stack typically includes Ollama for running local large language models, n8n as a low-code workflow automation platform, Supabase for database and vector storage, Open WebUI for interacting with models, Flowise for agent building, and additional services like SearXNG, Neo4j, and Langfuse for search, knowledge graphs, and observability. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    ...The repository includes code for training, evaluating, and feature extraction, with utilities to run k-NN or linear evaluation baselines to assess representation quality. Pretrained checkpoints cover multiple model sizes so practitioners can trade accuracy for speed and memory depending on their deployment constraints.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    ...The project initially aimed for a minimalistic implementation of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. Although it has expanded in terms of features, it remains minimalistic by relying only on the numpy library and emphasizing vectorization in coding style.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    OpenLIT

    OpenLIT

    OpenLIT is an open-source LLM Observability tool

    OpenLIT is an OpenTelemetry-native tool designed to help developers gain insights into the performance of their LLM applications in production. It automatically collects LLM input and output metadata and monitors GPU performance for self-hosted LLMs. OpenLIT makes integrating observability into GenAI projects effortless with just a single line of code. Whether you're working with popular LLM providers such as OpenAI and HuggingFace, or leveraging vector databases like ChromaDB, OpenLIT ensures your applications are monitored seamlessly, providing critical insights including GPU performance stats for self-hosted LLMs to improve performance and reliability. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 6
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    ChatGPT Clone

    ChatGPT Clone

    ChatGPT interface with better UI

    ChatGPT Clone demonstrates a ChatGPT-style conversational interface wired to large-language-model backends, packaged so developers can self-host and extend. The goal is to replicate the core chat UX—message history, streaming tokens, code blocks, and system prompts—while letting you plug in different provider APIs or local models. It showcases a clean separation between the web client and the message orchestration layer so you can experiment with prompts, roles, and memory strategies. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    Mistral Vibe CLI

    Mistral Vibe CLI

    Minimal CLI coding agent by Mistral

    Mistral Vibe is an AI-powered “vibe-coding” command-line interface (CLI) and coding-assistant framework built by Mistral AI to let developers write, refactor, search, and manage code through natural language and context-aware automation, rather than manual typing only. It aims to take developers out of repetitive boilerplate and let them stay “in the flow”: you can ask the tool to generate functions, refactor code, search across the codebase, manipulate files, commit changes via Git, or run...
    Downloads: 13 This Week
    Last Update:
    See Project
  • 9
    Omnilingual ASR

    Omnilingual ASR

    Omnilingual ASR Open-Source Multilingual SpeechRecognition

    ...The repo is aimed at pushing practical multilingual ASR—robust to accents, code-switching, and domain shifts—rather than language-by-language systems. For practitioners, it’s a starting point to study transfer, zero-shot behavior, and trade-offs between model size, compute cost, and coverage.
    Downloads: 5 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Red Discord Bot

    Red Discord Bot

    A multi-function Discord bot

    Red is a fully modular bot, meaning all features and commands can be enabled/disabled to your liking, making it completely customizable. This is a self-hosted bot, meaning you will need to host and maintain your own instance. You can turn Red into an admin bot, music bot, trivia bot, new best friend or all of these together! CustomCommands allows you to create simple commands for your bot without requiring you to code your own cog for Red. If the command you attempt to create shares a name with an already loaded command, you cannot overwrite it with this cog. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    DSPy

    DSPy

    DSPy: The framework for programming—not prompting—language models

    Developed by the Stanford NLP Group, DSPy (Declarative Self-improving Python) is a framework that enables developers to program language models through compositional Python code rather than relying solely on prompt engineering. It facilitates the construction of modular AI systems and provides algorithms for optimizing prompts and weights, enhancing the quality and reliability of language model outputs.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    AI Runner

    AI Runner

    Offline inference engine for art, real-time voice conversations

    AI Runner is an offline inference engine designed to run a collection of AI workloads on your own machine, including image generation for art, real-time voice conversations, LLM-powered chatbots and automated workflows. It is implemented as a desktop-oriented Python application and emphasizes privacy and self-hosting, allowing users to work with text-to-speech, speech-to-text, text-to-image and multimodal models without sending data to external services. At the core of its LLM stack is a mode-based architecture with specialized “modes” such as Author, Code, Research, QA and General, and a workflow manager that automatically routes user requests to the right agent based on the task. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    Loki Mode

    Loki Mode

    Multi-agent autonomous startup system for Claude Code

    ...It orchestrates dozens of agent types across swarms that handle designated roles — such as architecture, coding, QA, deployment, and business workflows — running in parallel to cover both engineering and operational tasks without continuous human intervention. By supporting multiple AI providers (like Claude Code, OpenAI Codex CLI, and Google Gemini CLI), loki-mode dynamically selects and spawns only the needed agents for a given project, optimizing computational resources and task throughput. Its Reason-Act-Reflect-Verify (RARV) cycle with self-verification loops emphasizes quality and resilience, automating end-to-end development lifecycles.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Claude-Flow

    Claude-Flow

    The leading agent orchestration platform for Claude

    ...The platform supports both quick swarm tasks and persistent multi-agent sessions known as hives, facilitating distributed AI collaboration with persistent contextual memory. At its core, Claude-Flow integrates Dynamic Agent Architecture (DAA) for self-organizing agent management, neural pattern recognition accelerated by WebAssembly SIMD, and a SQLite-based memory system for context retention and knowledge persistence across tasks. It automates development workflows via pre- and post-operation hooks, providing seamless coordination, code formatting, validation, and performance optimization.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    ChatGPT Academic

    ChatGPT Academic

    ChatGPT extension for scientific research work

    ChatGPT extension for scientific research work, specially optimized academic paper polishing experience, supports custom shortcut buttons, supports custom function plug-ins, supports markdown table display, double display of Tex formulas, complete code display function, new local Python/C++/Go project tree Analysis function/Project source code self-translation ability, newly added PDF and Word document batch summary function/PDF paper full-text translation function. All buttons are dynamically generated by reading functional.py, you can add custom functions at will, and liberate the pasteboard. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Recommenders

    Recommenders

    Best practices on recommendation systems

    ...Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several state-of-the-art algorithms are included for self-study and customization in your own applications. Please see the setup guide for more details on setting up your machine locally, on a data science virtual machine (DSVM) or on Azure Databricks. Independent or incubating algorithms and utilities are candidates for the contrib folder. This will house contributions which may not easily fit into the core repository or need time to refactor or mature the code and add necessary tests.
    Downloads: 18 This Week
    Last Update:
    See Project
  • 19
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Diplomacy Cicero

    Diplomacy Cicero

    Code for Cicero, an AI agent that plays the game of Diplomacy

    ...Configuration is managed via protobuf files to define tasks such as self-play, benchmark agent comparisons, and RL training. The project is now archived and read-only, reflecting that it is no longer actively developed but remains publicly available for research use.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Vision Transformer Pytorch

    Vision Transformer Pytorch

    Implementation of Vision Transformer, a simple way to achieve SOTA

    This repository provides a from-scratch, minimalist implementation of the Vision Transformer (ViT) in PyTorch, focusing on the core architectural pieces needed for image classification. It breaks down the model into patch embedding, positional encoding, multi-head self-attention, feed-forward blocks, and a classification head so you can understand each component in isolation. The code is intentionally compact and modular, which makes it easy to tinker with hyperparameters, depth, width, and attention dimensions. Because it stays close to vanilla PyTorch, you can integrate custom datasets and training loops without framework lock-in. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 22
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    FastKoko

    FastKoko

    Dockerized FastAPI wrapper for Kokoro-82M text-to-speech model

    FastKoko is a self-hosted text-to-speech server built around the Kokoro-82M model and exposed through a FastAPI backend. It is designed to be easy to deploy via Docker, with separate CPU and GPU images so that users can choose between pure CPU inference and NVIDIA GPU acceleration. The project exposes an OpenAI-compatible speech endpoint, which means existing code that talks to the OpenAI audio API can often be pointed at a Kokoro-FastAPI instance with minimal changes. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    ...The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component. A pipeline component is a self-contained set of user code, packaged as a Docker image, that performs one step in the pipeline. For example, a component can be responsible for data preprocessing, data transformation, model training, and so on.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next