Showing 9 open source projects for "ram speed benchmark"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Easy-to-use Business Software for the Waste Management Software Industry Icon
    Easy-to-use Business Software for the Waste Management Software Industry

    Increase efficiency, expedite accounts receivables, optimize routes, acquire new customers, & more!

    DOP Software’s mission is to streamline waste and recycling business’ processes by providing them with dynamic, comprehensive software and services that increase productivity and quality of performance.
    Learn More
  • 1
    Pfl Research

    Pfl Research

    Simulation framework for accelerating research

    A fast, modular Python framework released by Apple for privacy-preserving federated learning (PFL) simulation. Integrates with TensorFlow, PyTorch, and classical ML, and offers high-speed distributed simulation (7–72× faster than alternatives).
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    ChatGLM2-6B

    ChatGLM2-6B

    ChatGLM2-6B: An Open Bilingual Chat LLM

    ChatGLM2-6B is the second-gen Chinese-English conversational LLM from ZhipuAI/Tsinghua. It upgrades the base model with GLM’s hybrid pretraining objective, 1.4 TB bilingual data, and preference alignment—delivering big gains on MMLU, CEval, GSM8K, and BBH. The context window extends up to 32K (FlashAttention), and Multi-Query Attention improves speed and memory use. The repo includes Python APIs, CLI & web demos, OpenAI-style/FASTAPI servers, and quantized checkpoints for lightweight local...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    ...Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep integration with the Hugging Face Hub, allowing you to easily load and share a dataset with the wider NLP community. There are currently over 2658 datasets, and more than 34 metrics available. Datasets naturally frees the user from RAM memory limitation, all datasets are memory-mapped using an efficient zero-serialization cost backend (Apache Arrow). ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time...
    Downloads: 1 This Week
    Last Update:
    See Project
  • The complete IT asset and license management platform Icon
    The complete IT asset and license management platform

    Gain full visibility and control over your IT assets, licenses, usage and spend in one place with Setyl.

    The platform seamlessly integrates with 100+ IT systems, including MDM, RMM, IDP, SSO, HR, finance, helpdesk tools, and more.
    Learn More
  • 5
    GLM-V

    GLM-V

    GLM-4.5V and GLM-4.1V-Thinking: Towards Versatile Multimodal Reasoning

    GLM-V is an open-source vision-language model (VLM) series from ZhipuAI that extends the GLM foundation models into multimodal reasoning and perception. The repository provides both GLM-4.5V and GLM-4.1V models, designed to advance beyond basic perception toward higher-level reasoning, long-context understanding, and agent-based applications. GLM-4.5V builds on the flagship GLM-4.5-Air foundation (106B parameters, 12B active), achieving state-of-the-art results on 42 benchmarks across image,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Tracking Any Point (TAP)

    Tracking Any Point (TAP)

    DeepMind model for tracking arbitrary points across videos & robotics

    TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MMAction2

    MMAction2

    OpenMMLab's Next Generation Video Understanding Toolbox and Benchmark

    ...We provide detailed documentation and API reference, as well as unit tests. We support Multigrid on Kinetics400, achieve 76.07% Top-1 accuracy and accelerate training speed.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    GLM-130B

    GLM-130B

    GLM-130B: An Open Bilingual Pre-Trained Model (ICLR 2023)

    ...The model supports efficient inference via INT8 and INT4 quantization, reducing hardware requirements from 8× A100 GPUs to as little as a single server with 4× RTX 3090s. Built on the SwissArmyTransformer (SAT) framework and compatible with DeepSpeed and FasterTransformer, it supports high-speed inference (up to 2.5× faster) and reproducible evaluation across 30+ benchmark tasks.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 9
    maskrcnn-benchmark

    maskrcnn-benchmark

    Fast, modular reference implementation of Instance Segmentation

    Mask R-CNN Benchmark is a PyTorch-based framework that provides high-performance implementations of object detection, instance segmentation, and keypoint detection models. Originally built to benchmark Mask R-CNN and related models, it offers a clean, modular design to train and evaluate detection systems efficiently on standard datasets like COCO.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Risk Analytics - Supplier Intelligence Icon
    Dun and Bradstreet Risk Analytics - Supplier Intelligence

    Use an AI-powered solution for supply and compliance teams who want to mitigate costly supplier risks intelligently.

    Risk, procurement, and compliance teams across the globe are under pressure to deal with geopolitical and business risks. Third-party risk exposure is impacted by rapidly scaling complexity in domestic and cross-border businesses, along with complicated and diverse regulations. It is extremely important for companies to proactively manage their third-party relationships. An AI-powered solution to mitigate and monitor counterparty risks on a continuous basis, this cutting-edge platform is powered by D&B’s Data Cloud with 520M+ Global Business Records and 2B+ yearly updates for third-party risk insights. With high-risk procurement alerts and multibillion match points, D&B Risk Analytics leverages best-in-class risk data to help drive informed decisions. Perform quick and comprehensive screening, using intelligent workflows. Receive ongoing alerts of key business indicators and disruptions.
    Learn More
  • Previous
  • You're on page 1
  • Next