Showing 35 open source projects for "python samples"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 1
    BioEmu

    BioEmu

    Inference code for scalable emulation of protein equilibrium ensembles

    Biomolecular Emulator (BioEmu for short) is a model that samples from the approximated equilibrium distribution of structures for a protein monomer, given its amino acid sequence. By default, unphysical structures (steric clashes or chain discontinuities) will be filtered out, so you will typically get fewer samples in the output than requested. The difference can be very large if your protein has large disordered regions, which are very likely to produce clashes. BioEmu outputs structures...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    GPT-2 Output Dataset

    GPT-2 Output Dataset

    Dataset of GPT-2 outputs for research in detection, biases, and more

    The GPT-2 Output Dataset is a large collection of model-generated text, released by OpenAI alongside the GPT-2 research paper to study the behaviors and limitations of large language models. It contains 250,000 samples of GPT-2 outputs, generated with different sampling strategies such as top-k truncation, to highlight the diversity and quality of model completions. The dataset also includes corresponding human-written text for comparison, enabling researchers to explore methods for...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    DeepVariant

    DeepVariant

    DeepVariant is an analysis pipeline that uses a deep neural networks

    DeepVariant is an analysis pipeline that uses a deep neural network to call genetic variants from next-generation DNA sequencing data. DeepVariant is a deep learning-based variant caller that takes aligned reads (in BAM or CRAM format), produces pileup image tensors from them, classifies each tensor using a convolutional neural network, and finally reports the results in a standard VCF or gVCF file. DeepTrio is a deep learning-based trio variant caller built on top of DeepVariant. DeepTrio...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Agent Payments Protocol (AP2)

    Agent Payments Protocol (AP2)

    Building a Secure and Interoperable Future for AI-Driven Payments

    ...In effect, AP2 aims to define a secure, interoperable protocol that allows software agents to act on behalf of users—making payments or shopping decisions autonomously—while preserving necessary security, auditability, and trust. The repository contains sample scenarios (in Python, Android, etc.) that illustrate how agents, servers, and payments flows would work under the protocol. It includes “types” definitions (the core message and object schema) and example agent implementations to demonstrate the mechanics of agent-to-agent and agent-to-server interactions. The design emphasizes flexibility: although their samples use a particular Agent Development Kit (ADK) or runtime, the protocol is intended to be independent of those choices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • HOA Software Icon
    HOA Software

    Smarter Community Management Starts Here

    Simplify HOA management with software that handles everything from financials to communication.
    Learn More
  • 5
    Generative AI for Beginners (Version 3)

    Generative AI for Beginners (Version 3)

    21 Lessons, Get Started Building with Generative AI

    ...Each lesson includes a short video, a written guide, runnable samples for Azure OpenAI, the GitHub Marketplace Model Catalog, and the OpenAI API, plus a “Keep Learning” section for deeper study.
    Downloads: 11 This Week
    Last Update:
    See Project
  • 6
    DataChain

    DataChain

    AI-data warehouse to enrich, transform and analyze unstructured data

    Datachain enables multimodal API calls and local AI inferences to run in parallel over many samples as chained operations. The resulting datasets can be saved, versioned, and sent directly to PyTorch and TensorFlow for training. Datachain can persist features of Python objects returned by AI models, and enables vectorized analytical operations over them. The typical use cases are data curation, LLM analytics and validation, image segmentation, pose detection, and GenAI alignment. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Improved Diffusion

    Improved Diffusion

    Release for Improved Denoising Diffusion Probabilistic Models

    improved-diffusion is an open source implementation of diffusion probabilistic models created by OpenAI. These models, also known as score-based generative models, are a class of generative models that have shown strong performance in producing high-quality synthetic data such as images. The repository provides code for training and sampling diffusion models with improved techniques that enhance stability, efficiency, and output fidelity. It includes scripts for setting up training runs,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 8
    Llama Cookbook

    Llama Cookbook

    Solve end to end problems using Llama model family

    The Llama Cookbook is the official Meta LLaMA guide for inference, fine‑tuning, RAG, and multi-step use-cases. It offers recipes, code samples, and integration examples across provider platforms (WhatsApp, SQL, long context workflows), enabling developers to quickly harness LLaMA models
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Lightly

    Lightly

    A python library for self-supervised learning on images

    ...This allows selecting the best core set of samples for model training through advanced filtering. We provide PyTorch, PyTorch Lightning and PyTorch Lightning distributed examples for each of the models to kickstart your project. Lightly requires Python 3.6+ but we recommend using Python 3.7+. We recommend installing Lightly in a Linux or OSX environment. With lightly, you can use the latest self-supervised learning methods in a modular way using the full power of PyTorch. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Field Sales+ for MS Dynamics 365 and Salesforce Icon
    Field Sales+ for MS Dynamics 365 and Salesforce

    Maximize your sales performance on the go.

    Bring Dynamics 365 and Salesforce wherever you go with Resco’s solution. With powerful offline features and reliable data syncing, your team can access CRM data on mobile devices anytime, anywhere. This saves time, cuts errors, and speeds up customer visits.
    Learn More
  • 10
    Denoising Diffusion Probabilistic Model

    Denoising Diffusion Probabilistic Model

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch

    Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to generative modeling that may have the potential to rival GANs. It uses denoising score matching to estimate the gradient of the data distribution, followed by Langevin sampling to sample from the true distribution. If you simply want to pass in a folder name and the desired image dimensions, you can use the Trainer class to easily train a model.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    A package to generate synthetic tabular and time-series data leveraging state-of-the-art generative models. Synthetic data is artificially generated data that is not collected from real-world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy. This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    LitterBox

    LitterBox

    A secure sandbox environment for malware developers and red teamers

    LitterBox is a controlled malware-analysis and payload-testing sandbox aimed at red teams who need to validate evasions and behaviors before deployment. It provides an isolated environment to exercise payloads against modern detection stacks, verify signatures and heuristics, and observe runtime characteristics without leaking binaries to third-party vendors. The README frames typical use cases: testing evasion, validating detections, analyzing behavior, and keeping sensitive tooling...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    Magika

    Magika

    Fast and accurate AI powered file content types detection

    Magika is an AI-powered file-type detector that uses a compact deep-learning model to classify binary and textual files with high accuracy and very low latency. The model is engineered to be only a few megabytes and to run quickly even on CPU-only systems, making it practical for desktop apps, servers, and security pipelines. Magika ships as a command-line tool and a library, providing drop-in detection that improves on traditional “magic number” and heuristic approaches, especially for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Simple StyleGan2 for Pytorch

    Simple StyleGan2 for Pytorch

    Simplest working implementation of Stylegan2

    Simple Pytorch implementation of Stylegan2 that can be completely trained from the command-line, no coding needed. You will need a machine with a GPU and CUDA installed. You can also specify the location where intermediate results and model checkpoints should be stored. You can increase the network capacity (which defaults to 16) to improve generation results, at the cost of more memory. By default, if the training gets cut off, it will automatically resume from the last checkpointed file....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AnimateDiff

    AnimateDiff

    Plug-n-play module turning text-to-image models into animation

    AnimateDiff is an open-source project designed to enhance text-to-image diffusion models by adding animation capabilities. It allows users to turn static images generated by popular text-to-image models into animated sequences without requiring additional model training. This plug-and-play tool is compatible with a wide range of community models and facilitates the generation of animation directly from pre-existing text-to-image models. It supports various configurations to create animations...
    Downloads: 16 This Week
    Last Update:
    See Project
  • 18
    Consistency Models

    Consistency Models

    Official repo for consistency models

    consistency_models is the repository for Consistency Models, a new family of generative models introduced by OpenAI that aim to generate high-quality samples by mapping noise directly into data — circumventing the need for lengthy diffusion chains. It builds on and extends diffusion model frameworks (e.g. based on the guided-diffusion codebase), adding techniques like consistency distillation and consistency training to enable fast, often one-step, sample generation. The repo is implemented...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    finetuner

    finetuner

    Task-oriented finetuning for better embeddings on neural search

    Fine-tuning is an effective way to improve performance on neural search tasks. However, setting up and performing fine-tuning can be very time-consuming and resource-intensive. Jina AI’s Finetuner makes fine-tuning easier and faster by streamlining the workflow and handling all the complexity and infrastructure in the cloud. With Finetuner, you can easily enhance the performance of pre-trained models, making them production-ready without extensive labeling or expensive hardware. Create...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PRM800K

    PRM800K

    800,000 step-level correctness labels on LLM solutions to MATH problem

    PRM800K is a process supervision dataset accompanying the paper Let’s Verify Step by Step, providing 800,000 step-level correctness labels on model-generated solutions to problems from the MATH dataset. The repository releases the raw labels and the labeler instructions used in two project phases, enabling researchers to study how human raters graded intermediate reasoning. Data are stored as newline-delimited JSONL files tracked with Git LFS, where each line is a full solution sample that...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    TensorFlow Documentation

    TensorFlow Documentation

    TensorFlow documentation

    An end-to-end platform for machine learning. TensorFlow makes it easy to create ML models that can run in any environment. Learn how to use the intuitive APIs through interactive code samples.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    ChatGPT Plugins Collection

    ChatGPT Plugins Collection

    An unofficial collection of Plugins for ChatGPT

    ChatGPT-Plugins-Collection is a community-driven repository that gathers examples and resources for building, testing, and experimenting with ChatGPT plugins. The collection provides a variety of plugin implementations that showcase different use cases, helping developers learn how to extend ChatGPT’s functionality. It is designed to serve both as a learning resource for beginners and a reference point for more experienced developers. By centralizing community contributions, the repository...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 23
    Minimal text diffusion

    Minimal text diffusion

    A minimal implementation of diffusion models for text generation

    A minimal implementation of diffusion models of text: learns a diffusion model of a given text corpus, allowing to generate text samples from the learned model. The main idea was to retain just enough code to allow training a simple diffusion model and generating samples, remove image-related terms, and make it easier to use. To train a model, run scripts/train.sh. By default, this will train a model on the simple corpus. However, you can change this to any text file using the --train_data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Guided Diffusion

    Guided Diffusion

    Codebase for Diffusion Models Beat GANS on Image Synthesis

    The guided-diffusion repository is centered on diffusion models for image synthesis, with a focus on classifier guidance and improvements over earlier diffusion frameworks. It is derived from OpenAI’s improved-diffusion work, enhanced to include guided generation where a classifier (or other guidance mechanism) can steer sampling toward desired classes or attributes. The code provides model definitions (UNet, diffusion schedules), sampling and training scripts, and utilities for guidance and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Parakeet

    Parakeet

    PAddle PARAllel text-to-speech toolKIT

    PAddle PARAllel text-to-speech toolKIT (supporting Tacotron2, Transformer TTS, FastSpeech2/FastPitch, SpeedySpeech, WaveFlow and Parallel WaveGAN) Parakeet aims to provide a flexible, efficient and state-of-the-art text-to-speech toolkit for the open-source community. It is built on PaddlePaddle dynamic graph and includes many influential TTS models. In order to facilitate exploiting the existing TTS models directly and developing the new ones, Parakeet selects typical models and provides...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next