Showing 18 open source projects for "number prediction algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    A lightweight vision library for performing large-scale object detection & instance segmentation. Object detection and instance segmentation are by far the most important fields of applications in Computer Vision. However, detection of small objects and inference on large images are still major issues in practical usage. Here comes the SAHI to help developers overcome these real-world problems with many vision utilities. Detection of small objects and objects far away in the scene is a major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    ...It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark tree models. To understand how a single feature effects the output of the model we can plot the SHAP value of that feature vs. the value of the feature for all the examples in a dataset. Since SHAP values represent a feature's responsibility for a change in the model output, the plot below represents the change in predicted house price as RM (the average number of rooms per house in an area) changes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TextGen

    TextGen

    textgen, Text Generation models

    ...This project implements the training and prediction of Seq2Seq, ConvSeq2Seq, and BART models based on PyTorch, which can be used for text generation tasks such as text translation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ...By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Zendesk: The Complete Customer Service Solution Icon
    Zendesk: The Complete Customer Service Solution

    Discover AI-powered, award-winning customer service software trusted by 200k customers

    Equip your agents with powerful AI tools and workflows that boost efficiency and elevate customer experiences across every channel.
    Learn More
  • 5
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    U-Net Fusion RFI

    U-Net Fusion RFI

    U-Net for RFI Detection based on @jakeret's implementation

    See original code here: https://github.com/jakeret/tf_unet Currently this project is based on Tensorflow 1.13 code base and there are no plans to transfer to TF version 2. The primary improvements to this code base include a training and evaluation framework, along with a fusion based approach to detection, combining a number of models (currently hard coded to two trained models) along with Sum Threshold as an additional "expert." Additional work is being done to add custom layers to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    DETR

    DETR

    End-to-end object detection with transformers

    ...We replace the full complex hand-crafted object detection pipeline with a Transformer, and match Faster R-CNN with a ResNet-50, obtaining 42 AP on COCO using half the computation power (FLOPs) and the same number of parameters. Inference in 50 lines of PyTorch. What it is. Unlike traditional computer vision techniques, DETR approaches object detection as a direct set prediction problem. It consists of a set-based global loss, which forces unique predictions via bipartite matching, and a Transformer encoder-decoder architecture. Given a fixed small set of learned object queries, DETR reasons about the relations of the objects and the global image context to directly output the final set of predictions in parallel. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 10
    CCZero (中国象棋Zero)

    CCZero (中国象棋Zero)

    Implement AlphaZero/AlphaGo Zero methods on Chinese chess

    ChineseChess-AlphaZero is a project that implements the AlphaZero algorithm for the game of Chinese Chess (Xiangqi). It adapts DeepMind’s AlphaZero method—combining neural networks and Monte Carlo Tree Search (MCTS)—to learn and play Chinese Chess without prior human data. The system includes self-play, training, and evaluation pipelines tailored to Xiangqi's unique game mechanics.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Coach

    Coach

    Enables easy experimentation with state of the art algorithms

    Coach is a python framework that models the interaction between an agent and an environment in a modular way. With Coach, it is possible to model an agent by combining various building blocks, and training the agent on multiple environments. The available environments allow testing the agent in different fields such as robotics, autonomous driving, games and more. It exposes a set of easy-to-use APIs for experimenting with new RL algorithms and allows simple integration of new environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    CTS Surveyor

    CTS Surveyor

    Foot traffic and facial analytics for your business and home

    Surveyor is a software solution that monitors its environment via camera and gathers demographic information about the public in the surrounding area, providing important statistics such as number of people passing by as well as providing facial analytics to classify the pedestrians based on their age and gender. The statistical data is stored in a local database and is made available via RESTful API’s, and easy integration with other applications can be accomplished via a WebSocket...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Universe Starter Agent

    Universe Starter Agent

    A starter agent that can solve a number of universe environments

    The universe-starter-agent repository is an archived OpenAI codebase designed as a starter reinforcement-learning agent that can interact with and solve tasks in OpenAI’s Universe environment platform. Its purpose is to serve as a baseline or reference implementation so researchers or developers can see how to build agents that operate in real-time, visual environments (e.g., games, browser apps) via pixel observations and keyboard/mouse actions. Under the hood, this starter agent implements...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community,...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    ExSTraCS

    ExSTraCS

    Extended Supervised Tracking and Classifying System

    This advanced machine learning algorithm is a Michigan-style learning classifier system (LCS) developed to specialize in classification, prediction, data mining, and knowledge discovery tasks. Michigan-style LCS algorithms constitute a unique class of algorithms that distribute learned patterns over a collaborative population of of individually interpretable IF:THEN rules, allowing them to flexibly and effectively describe complex and diverse problem spaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16

    Unsupervised Random Forest

    On-line Unsupervised Random Forest

    This tool uses Random Forest and PAM to cluster observations and to calculate the dissimilarity between observations. It supports on-line prediction of new observations (no need to retrain); and supports datasets that contain both continuous (e.g. CPU load) and categorical (e.g. VM instance type) features. In particular, we use an unsupervised formulation of the Random Forest algorithm to calculate similarities and provide them as input to a clustering algorithm. For the sake of efficiency and meeting the dynamism requirement of autonomic clouds, our methodology consists of two steps: (i) off-line clustering and (ii) on-line prediction. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Neural Libs

    Neural Libs

    Neural network library for developers

    This project includes the implementation of a neural network MLP, RBF, SOM and Hopfield networks in several popular programming languages. The project also includes examples of the use of neural networks as function approximation and time series prediction. Includes a special program makes it easy to test neural network based on training data and the optimization of the network.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18

    LWPR

    Locally Weighted Projection Regression (LWPR)

    Locally Weighted Projection Regression (LWPR) is a fully incremental, online algorithm for non-linear function approximation in high dimensional spaces, capable of handling redundant and irrelevant input dimensions. At its core, it uses locally linear models, spanned by a small number of univariate regressions in selected directions in input space. A locally weighted variant of Partial Least Squares (PLS) is employed for doing the dimensionality reduction.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next