Showing 8 open source projects for "hosting"

View related business solutions
  • Outgrown Windows Task Scheduler? Icon
    Outgrown Windows Task Scheduler?

    Free diagnostic identifies where your workflow is breaking down—with instant analysis of your scheduling environment.

    Windows Task Scheduler wasn't built for complex, cross-platform automation. Get a free diagnostic that shows exactly where things are failing and provides remediation recommendations. Interactive HTML report delivered in minutes.
    Download Free Tool
  • Vibes don’t ship, Retool does Icon
    Vibes don’t ship, Retool does

    Start from a prompt and build production-ready apps on your data—with security, permissions, and compliance built in.

    Vibe coding tools create cool demos, but Retool helps you build software your company can actually use. Generate internal apps that connect directly to your data—deployed in your cloud with enterprise security from day one. Build dashboards, admin panels, and workflows with granular permissions already in place. Stop prototyping and ship on a platform that actually passes security review.
    Build apps that ship
  • 1
    DeepEval
    ...Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    PyTorch Image Models

    PyTorch Image Models

    The largest collection of PyTorch image encoders / backbones

    timm (PyTorch Image Models) is a premier library hosting a vast collection of state-of-the-art image classification models and backbones such as ResNet, EfficientNet, NFNet, Vision Transformer, ConvNeXt, and more. Created by Ross Wightman and now maintained by Hugging Face, it includes pretrained weights, data loaders, augmentations, optimizers, schedulers, and reference scripts for training, evaluation, inference, and model export.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    AI Runner

    AI Runner

    Offline inference engine for art, real-time voice conversations

    AI Runner is an offline inference engine designed to run a collection of AI workloads on your own machine, including image generation for art, real-time voice conversations, LLM-powered chatbots and automated workflows. It is implemented as a desktop-oriented Python application and emphasizes privacy and self-hosting, allowing users to work with text-to-speech, speech-to-text, text-to-image and multimodal models without sending data to external services. At the core of its LLM stack is a mode-based architecture with specialized “modes” such as Author, Code, Research, QA and General, and a workflow manager that automatically routes user requests to the right agent based on the task. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Agent Stack

    Agent Stack

    Deploy and share agents with open infrastructure

    Agent Stack is an open infrastructure platform designed to take AI agents from prototype to production, no matter how they were built. It includes a runtime environment, multi-tenant web UI, catalog of agents, and deployment flow that seeks to remove vendor lock-in and provide greater autonomy. Under the hood it’s built on the “Agent2Agent” (A2A) protocol, enabling interoperability between different agent ecosystems, runtime services, and frameworks. The platform supports agents built in...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    FastKoko

    FastKoko

    Dockerized FastAPI wrapper for Kokoro-82M text-to-speech model

    FastKoko is a self-hosted text-to-speech server built around the Kokoro-82M model and exposed through a FastAPI backend. It is designed to be easy to deploy via Docker, with separate CPU and GPU images so that users can choose between pure CPU inference and NVIDIA GPU acceleration. The project exposes an OpenAI-compatible speech endpoint, which means existing code that talks to the OpenAI audio API can often be pointed at a Kokoro-FastAPI instance with minimal changes. It supports multiple...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6

    SpiLLI

    Decentralized AI Inference

    SpiLLI provides infrastructure to manage, host, deploy and run Decentralized AI inference
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TensorFlow Ranking

    TensorFlow Ranking

    Learning to rank in TensorFlow

    ...LambdaLoss implementation for direct ranking metric optimization. Unbiased Learning-to-Rank from biased feedback data. We envision that this library will provide a convenient open platform for hosting and advancing state-of-the-art ranking models based on deep learning techniques, and thus facilitate both academic research and industrial applications. We provide a demo, with no installation required, to get started on using TF-Ranking. This demo runs on a colaboratory notebook, an interactive Python environment. Using sparse features and embeddings in TF-Ranking.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    EvalAI

    EvalAI

    Evaluating state of the art in AI

    ...If the challenge needs extra computational power, challenge organizers can easily add their own cluster of worker nodes to process participant submissions while we take care of hosting the challenge, handling user submissions, and maintaining the leaderboard. EvalAI lets participants submit code for their agent in the form of docker images which are evaluated against test environments on the evaluation server. During the evaluation, the worker fetches the image, test environment, and model snapshot and spins up a new container to perform the evaluation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next