Showing 11 open source projects for "duplicate code detect"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Manage queues and reduce operational costs Icon
    Manage queues and reduce operational costs

    Improve the waiting experience, gather service intelligence, and make data-driven decisions.

    Long queues cost businesses across the world trillions of dollars in lost sales. Customers who experience poor queuing are less likely to stay and recommend your business. Compare the performance of different locations and departments. Monitor the number of visitors waiting, average wait times, and other metrics. Give your staff the tools they need to supercharge your customer service. Recognize your team’s achievements and identify opportunities for growth. Easily measure and share performance results. Use service reports to keep track of KPIs and the effectiveness of service strategy. Eliminate in-person lines by allowing customers to join a virtual waitlist using their phones. Monitor your line in real-time. Let customers safely wait in their car, at home, or outside. Notify them when you are ready to serve them. Give customers regular updates and wait times. Make them feel like VIPs by talking to them directly and asking for their feedback.
    Learn More
  • 1
    Video-subtitle-extractor

    Video-subtitle-extractor

    A GUI tool for extracting hard-coded subtitle (hardsub) from videos

    Video hard subtitle extraction, generate srt file. There is no need to apply for a third-party API, and text recognition can be implemented locally. A deep learning-based video subtitle extraction framework, including subtitle region detection and subtitle content extraction. A GUI tool for extracting hard-coded subtitles (hardsub) from videos and generating srt files. Use local OCR recognition, no need to set up and call any API, and do not need to access online OCR services such as Baidu...
    Downloads: 47 This Week
    Last Update:
    See Project
  • 2
    FramePack

    FramePack

    Lets make video diffusion practical

    FramePack explores compact representations for sequences of image frames, targeting tasks where many near-duplicate frames carry redundant information. The idea is to “pack” frames by detecting shared structure and storing differences efficiently, which can accelerate training or inference on video-like data. By reducing I/O and memory bandwidth, datasets become lighter to load while models still see the essential temporal variation. The repository demonstrates both packing and unpacking...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 3
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    ...UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison and optimal prompt selection. Hallucinations have plagued LLMs since their inception. By quantifying degree of hallucination and quality of retrieved context, UpTrain helps to detect responses with low factual accuracy and prevent them before serving to the end-users. Unleash unparalleled power with a single line of code and tailor every detail as per as your use-case.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things like depth tokenizers, input masks for generation, and CUDA build questions, signaling active research iteration. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Modern, Flexible, and Easy-to-use LIMS Icon
    The Modern, Flexible, and Easy-to-use LIMS

    For Laboratory Managers, Laboratory Directors, Laboratory Techs, Laboratory Operations Staff

    Run your entire lab more efficiently with our highly configurable and flexible LIMS. Automate your workflow to process more samples, generate reports faster, and grow your laboratory.
    Learn More
  • 5
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    Swirl queries any number of data sources with APIs and uses spaCy and NLTK to re-rank the unified results without extracting and indexing anything! Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Face Alignment

    Face Alignment

    2D and 3D Face alignment library build using pytorch

    Detect facial landmarks from Python using the world's most accurate face alignment network, capable of detecting points in both 2D and 3D coordinates. Build using FAN's state-of-the-art deep learning-based face alignment method. For numerical evaluations, it is highly recommended to use the lua version which uses identical models with the ones evaluated in the paper.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    CleanRL

    CleanRL

    High-quality single file implementation of Deep Reinforcement Learning

    ...The implementation is clean and simple, yet we can scale it to run thousands of experiments using AWS Batch. CleanRL is not a modular library and therefore it is not meant to be imported. At the cost of duplicate code, we make all implementation details of a DRL algorithm variant easy to understand, so CleanRL comes with its own pros and cons. You should consider using CleanRL if you want to 1) understand all implementation details of an algorithm's variant or 2) prototype advanced features that other modular DRL libraries do not support (CleanRL has minimal lines of code so it gives you great debugging experience and you don't have to do a lot of subclassing like sometimes in modular DRL libraries).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Combine Jira and SCM data to improve team performance Icon
    Combine Jira and SCM data to improve team performance

    For engineering leaders who need to foster alignment with the business and streamline their operations for better efficiency and higher productivity

    Jellyfish is the leading Engineering Management Platform, providing complete visibility into engineering organizations, the work they do, and how they operate. By analyzing engineering signals from Git and Jira, qualitative team feedback, and contextual business data from roadmapping, incident response, HR, calendar, and collaboration tools, Jellyfish enables engineering leaders to align engineering decisions with business initiatives and deliver the right software, efficiently, on time. With Jellyfish, engineering leaders can focus their teams on what matters most to the business, driving strategic decisions and delivering results.
    Learn More
  • 10
    Reliable Metrics for Generative Models

    Reliable Metrics for Generative Models

    Code base for the precision, recall, density, and coverage metrics

    Reliable Fidelity and Diversity Metrics for Generative Models (ICML 2020). Devising indicative evaluation metrics for the image generation task remains an open problem. The most widely used metric for measuring the similarity between real and generated images has been the Fréchet Inception Distance (FID) score. Because it does not differentiate the fidelity and diversity aspects of the generated images, recent papers have introduced variants of precision and recall metrics to diagnose those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    DetectAndTrack

    DetectAndTrack

    The implementation of an algorithm presented in the CVPR18 paper

    DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in video. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next