Showing 22 open source projects for "code blocks"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    Claude Code SDK Python

    Claude Code SDK Python

    Python SDK for Claude Agent

    ...The repo is MIT-licensed and includes documentation and installation instructions (requires Python 3.10+, Node installation of Claude Code). Example usage shows how to stream responses, parse structured message blocks, or create persistent client sessions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Curated Transformers

    Curated Transformers

    PyTorch library of curated Transformer models and their components

    State-of-the-art transformers, brick by brick. Curated Transformers is a transformer library for PyTorch. It provides state-of-the-art models that are composed of a set of reusable components. Supports state-of-the-art transformer models, including LLMs such as Falcon, Llama, and Dolly v2. Implementing a feature or bugfix benefits all models. For example, all models support 4/8-bit inference through the bitsandbytes library and each model can use the PyTorch meta device to avoid unnecessary...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 3
    Diffusers

    Diffusers

    State-of-the-art diffusion models for image and audio generation

    ...Our library is designed with a focus on usability over performance, simple over easy, and customizability over abstractions. State-of-the-art diffusion pipelines that can be run in inference with just a few lines of code. Interchangeable noise schedulers for different diffusion speeds and output quality. Pretrained models that can be used as building blocks, and combined with schedulers, for creating your own end-to-end diffusion systems. We recommend installing Diffusers in a virtual environment from PyPi or Conda. For more details about installing PyTorch and Flax, please refer to their official documentation.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize readability and structuring code to match standard equations, over code reuse.
    Downloads: 0 This Week
    Last Update:
    See Project
  • AI-based, Comprehensive Service Management for Businesses and IT Providers Icon
    AI-based, Comprehensive Service Management for Businesses and IT Providers

    Modular solutions for change management, asset management and more

    ChangeGear provides IT staff with the functions required to manage everything from ticketing to incident, change and asset management and more. ChangeGear includes a virtual agent, self-service portals and AI-based features to support analyst and end user productivity.
    Learn More
  • 5
    LLMs-from-scratch

    LLMs-from-scratch

    Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

    LLMs-from-scratch is an educational codebase that walks through implementing modern large-language-model components step by step. It emphasizes building blocks—tokenization, embeddings, attention, feed-forward layers, normalization, and training loops—so learners understand not just how to use a model but how it works internally. The repository favors clear Python and NumPy or PyTorch implementations that can be run and modified without heavyweight frameworks obscuring the logic. Chapters...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    Vision Transformer Pytorch

    Vision Transformer Pytorch

    Implementation of Vision Transformer, a simple way to achieve SOTA

    This repository provides a from-scratch, minimalist implementation of the Vision Transformer (ViT) in PyTorch, focusing on the core architectural pieces needed for image classification. It breaks down the model into patch embedding, positional encoding, multi-head self-attention, feed-forward blocks, and a classification head so you can understand each component in isolation. The code is intentionally compact and modular, which makes it easy to tinker with hyperparameters, depth, width, and attention dimensions. Because it stays close to vanilla PyTorch, you can integrate custom datasets and training loops without framework lock-in. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    files-to-prompt

    files-to-prompt

    Concatenate a directory full of files into a single prompt

    ...It includes rich filtering controls, letting you limit by extension, include or skip hidden files, and ignore paths that match glob patterns or .gitignore rules. The output format is flexible: you can emit plain text, Markdown with fenced code blocks, or a Claude-XML style format designed for structured multi-file prompts. It can read file paths from stdin (including NUL-separated paths), which makes it easy to combine with find, rg, or other shell tools.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    ...Support for hyperparameter optimization, explainability, and rich metric visualizations. Experiment with different model architectures, tasks, features, and modalities with just a few parameter changes in the config. Think building blocks for deep learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    ChatGPT Clone

    ChatGPT Clone

    ChatGPT interface with better UI

    ChatGPT Clone demonstrates a ChatGPT-style conversational interface wired to large-language-model backends, packaged so developers can self-host and extend. The goal is to replicate the core chat UX—message history, streaming tokens, code blocks, and system prompts—while letting you plug in different provider APIs or local models. It showcases a clean separation between the web client and the message orchestration layer so you can experiment with prompts, roles, and memory strategies. The project is useful for prototyping assistants, documentation bots, and internal developer tools without committing to a specific vendor or UI framework. ...
    Downloads: 4 This Week
    Last Update:
    See Project
  • DAT Freight and Analytics - DAT Icon
    DAT Freight and Analytics - DAT

    DAT Freight and Analytics operates DAT One truckload freight marketplace

    DAT Freight & Analytics operates DAT One, North America’s largest truckload freight marketplace; DAT iQ, the industry’s leading freight data analytics service; and Trucker Tools, the leader in load visibility. Shippers, transportation brokers, carriers, news organizations, and industry analysts rely on DAT for market trends and data insights, informed by nearly 700,000 daily load posts and a database exceeding $1 trillion in freight market transactions. Founded in 1978, DAT is a business unit of Roper Technologies (Nasdaq: ROP), a constituent of the Nasdaq 100, S&P 500, and Fortune 1000. Headquartered in Beaverton, Ore., DAT continues to set the standard for innovation in the trucking and logistics industry.
    Learn More
  • 10
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    ...The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation so teams can benchmark and iterate rapidly. The code is organized to be legible and hackable, exposing attention blocks, positional encodings, and head configurations. With standard PyTorch abstractions, it integrates easily into existing training loops, loggers, and evaluation harnesses.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++ API that can be integrated with other deep-learning libraries to enable FP8 support for Transformers. As the number of parameters in Transformer models continues to grow, training and inference for architectures such as BERT, GPT, and T5 become very memory and compute-intensive. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Asteroid

    Asteroid

    The PyTorch-based audio source separation toolkit for researchers

    The PyTorch-based audio source separation toolkit for researchers. Pytorch-based audio source separation toolkit that enables fast experimentation on common datasets. It comes with a source code thats supports a large range of datasets and architectures, and a set of recipes to reproduce some important papers. Building blocks are thought and designed to be seamlessly plugged together. Filterbanks, encoders, maskers, decoders and losses are all common building blocks that can be combined in a flexible way to create new systems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    DiT (Diffusion Transformers)

    DiT (Diffusion Transformers)

    Official PyTorch Implementation of "Scalable Diffusion Models"

    DiT (Diffusion Transformer) is a powerful architecture that applies transformer-based modeling directly to diffusion generative processes for high-quality image synthesis. Unlike CNN-based diffusion models, DiT represents the diffusion process in the latent space and processes image tokens through transformer blocks with learned positional encodings, offering scalability and superior sample quality. The model architecture parallels large language models but for image tokens—each block...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    minGPT

    minGPT

    A minimal PyTorch re-implementation of the OpenAI GPT

    minGPT is a minimalist, educational re-implementation of the GPT (Generative Pretrained Transformer) architecture built in PyTorch, designed by Andrej Karpathy to expose the core structure of a transformer-based language model in as few lines of code as possible. It strips away extraneous bells and whistles, aiming to show how a sequence of token indices is fed into a stack of transformer blocks and then decoded into the next token probabilities, with both training and inference supported. Because the whole model is around 300 lines of code, users can follow each step—from embedding lookup, positional encodings, multi-head attention, feed-forward layers, to output heads—and thus demystify how GPT-style models work beneath the surface. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    ConvNeXt

    ConvNeXt

    Code release for ConvNeXt model

    ConvNeXt is a modernized convolutional neural network (CNN) architecture designed to rival Vision Transformers (ViTs) in accuracy and scalability while retaining the simplicity and efficiency of CNNs. It revisits classic ResNet-style backbones through the lens of transformer design trends—large kernel sizes, inverted bottlenecks, layer normalization, and GELU activations—to bridge the performance gap between convolutions and attention-based models. ConvNeXt’s clean, hierarchical structure...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Trax

    Trax

    Deep learning with clear code and speed

    Trax is an end-to-end library for deep learning that focuses on clear code and speed. It is actively used and maintained in the Google Brain team. Run a pre-trained Transformer, create a translator in a few lines of code. Features and resources, API docs, where to talk to us, how to open an issue and more. Walkthrough, how Trax works, how to make new models and train on your own data. Trax includes basic models (like ResNet, LSTM, Transformer) and RL algorithms (like REINFORCE, A2C, PPO). It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyCls

    PyCls

    Codebase for Image Classification Research, written in PyTorch

    pycls is a focused PyTorch codebase for image classification research that emphasizes reproducibility and strong, transparent baselines. It popularized families like RegNet and supports classic architectures (ResNet, ResNeXt) with clean implementations and consistent training recipes. The repository includes highly tuned schedules, augmentations, and regularization settings that make it straightforward to match reported accuracy without guesswork. Distributed training and mixed precision are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    PyTracking

    PyTracking

    Visual tracking library based on PyTorch

    A general python framework for visual object tracking and video object segmentation, based on PyTorch. Official implementation of the RTS (ECCV 2022), ToMP (CVPR 2022), KeepTrack (ICCV 2021), LWL (ECCV 2020), KYS (ECCV 2020), PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    ...Beyond dictionary induction, the learned embeddings are often used as building blocks for downstream tasks like classification, retrieval, or machine translation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22

    EducationalLCS

    eLCS - Educational Learning Classifier System

    ...Each eLCS implementations (from demo 2 up to demo 6) progressively add major components of the entire LCS algorithm in order to illustrate how work, how they are coded, and what impact they have on how an LCS algorithm runs. The Demo 6 version of eLCS is most similar to the UCS algorithm. Each version only includes the minimum code needed to perform the functions they were designed for. This way users can start by examining the simplest version of the code and progress forward. This code is intended to be used as an educational tool, or as algorithmic code building blocks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next