Showing 72 open source projects for "algorithm"

View related business solutions
  • Your top-rated shield against malware and online scams | Avast Free Antivirus Icon
    Your top-rated shield against malware and online scams | Avast Free Antivirus

    Browse and email in peace, supported by clever AI

    Our antivirus software scans for security and performance issues and helps you to fix them instantly. It also protects you in real time by analyzing unknown files before they reach your desktop PC or laptop — all for free.
    Free Download
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Lama Cleaner

    Lama Cleaner

    Image inpainting tool powered by SOTA AI Model

    ... their work. Completely free and open-source, fully self-hosted, supports CPU & GPU. Windows 1-Click Installer, classical image inpainting algorithm powered by cv2. Multiple SOTA AI models, and various inpainting strategies. Run as a desktop application. Interactive Segmentation on any object.
    Downloads: 32 This Week
    Last Update:
    See Project
  • 2
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting...
    Downloads: 10 This Week
    Last Update:
    See Project
  • 3
    Imagen - Pytorch

    Imagen - Pytorch

    Implementation of Imagen, Google's Text-to-Image Neural Network

    Implementation of Imagen, Google's Text-to-Image Neural Network that beats DALL-E2, in Pytorch. It is the new SOTA for text-to-image synthesis. Architecturally, it is actually much simpler than DALL-E2. It consists of a cascading DDPM conditioned on text embeddings from a large pre-trained T5 model (attention network). It also contains dynamic clipping for improved classifier-free guidance, noise level conditioning, and a memory-efficient unit design. It appears neither CLIP nor prior...
    Downloads: 17 This Week
    Last Update:
    See Project
  • 4
    PyGAD

    PyGAD

    Source code of PyGAD, Python 3 library for building genetic algorithms

    PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine learning algorithms. It supports Keras and PyTorch. PyGAD supports optimizing both single-objective and multi-objective problems. PyGAD supports different types of crossover, mutation, and parent selection. PyGAD allows different types of problems to be optimized using the genetic algorithm by customizing the fitness function.
    Downloads: 9 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 12 This Week
    Last Update:
    See Project
  • 6
    sktime

    sktime

    A unified framework for machine learning with time series

    ... interface for distinct but related time series learning tasks. It features dedicated time series algorithms and tools for composite model building such as pipelining, ensembling, tuning, and reduction, empowering users to apply an algorithm designed for one task to another.
    Downloads: 10 This Week
    Last Update:
    See Project
  • 7
    AnyTrading

    AnyTrading

    The most simple, flexible, and comprehensive OpenAI Gym trading

    gym-anytrading is an OpenAI Gym-compatible environment designed for developing and testing reinforcement learning algorithms on trading strategies. It simulates trading environments for financial markets, including stocks and forex.
    Downloads: 7 This Week
    Last Update:
    See Project
  • 8
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    ... of the Self-Organizing Map (SOM) algorithm, focusing on simplicity in features, dependencies, and code style. Although it has expanded in terms of features, it remains minimalistic by relying only on the numpy library and emphasizing vectorization in coding style.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 9
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    ... science, empowering data scientist to quickly understand and automatically detect silent model failure. By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 6 This Week
    Last Update:
    See Project
  • MongoDB Atlas | Run databases anywhere Icon
    MongoDB Atlas | Run databases anywhere

    Ensure the availability of your data with coverage across AWS, Azure, and GCP on MongoDB Atlas—the multi-cloud database for every enterprise.

    MongoDB Atlas allows you to build and run modern applications across 125+ cloud regions, spanning AWS, Azure, and Google Cloud. Its multi-cloud clusters enable seamless data distribution and automated failover between cloud providers, ensuring high availability and flexibility without added complexity.
    Learn More
  • 10
    TextGen

    TextGen

    textgen, Text Generation models

    Implementation of Text Generation models. textgen implements a variety of text generation models, including UDA, GPT2, Seq2Seq, BART, T5, SongNet and other models, out of the box. UDA, non-core word replacement. EDA, simple data augmentation technique: similar words, synonym replacement, random word insertion, deletion, replacement. This project refers to Google's UDA (non-core word replacement) algorithm and EDA algorithm, based on TF-IDF to replace some unimportant words in sentences...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Recommenders

    Recommenders

    Best practices on recommendation systems

    The Recommenders repository provides examples and best practices for building recommendation systems, provided as Jupyter notebooks. The module reco_utils contains functions to simplify common tasks used when developing and evaluating recommender systems. Several utilities are provided in reco_utils to support common tasks such as loading datasets in the format expected by different algorithms, evaluating model outputs, and splitting training/test data. Implementations of several...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    R1-V

    R1-V

    Witness the aha moment of VLM with less than $3

    R1-V is an initiative aimed at enhancing the generalization capabilities of Vision-Language Models (VLMs) through Reinforcement Learning in Visual Reasoning (RLVR). The project focuses on building a comprehensive framework that emphasizes algorithm enhancement, efficiency optimization, and task diversity to achieve general vision-language intelligence and visual/GUI agents. The team's long-term goal is to contribute impactful open-source research in this domain.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    TensorHouse

    TensorHouse

    A collection of reference Jupyter notebooks and demo AI/ML application

    TensorHouse is a scalable reinforcement learning (RL) platform that focuses on high-throughput experience generation and distributed training. It is designed to efficiently train agents across multiple environments and compute resources. TensorHouse enables flexible experiment management, making it suitable for large-scale RL experiments in both research and applied settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    BudouX

    BudouX

    Standalone, small, language-neutral

    Standalone. Small. Language-neutral. BudouX is the successor to Budou, the machine learning-powered line break organizer tool. It is standalone. It works with no dependency on third-party word segmenters such as Google cloud natural language API. It is small. It takes only around 15 KB including its machine learning model. It's reasonable to use it even on the client-side. It is language-neutral. You can train a model for any language by feeding a dataset to BudouX’s training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    HDBSCAN

    HDBSCAN

    A high performance implementation of HDBSCAN clustering

    ..., is intuitive and easy to select. HDBSCAN is ideal for exploratory data analysis; it's a fast and robust algorithm that you can trust to return meaningful clusters (if there are any).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    amrlib

    amrlib

    A python library that makes AMR parsing, generation and visualization

    ... in both the GUI and as library functions. Training and test code for both the StoG and GtoS models. A SpaCy extension that allows direct conversion of SpaCy Docs and Spans to AMR graphs. Sentence to Graph alignment routines FAA_Aligner (Fast_Align Algorithm), based on the ISI aligner code detailed in this paper. RBW_Aligner (Rule Based Word) for a simple, single token to single node alignment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AnnLite

    AnnLite

    A fast embedded library for approximate nearest neighbor search

    AnnLite is a lightweight and embeddable library for fast and filterable approximate nearest neighbor search (ANNS). It allows to search for nearest neighbors in a dataset of millions of points with a Pythonic API. A simple API is designed to be used with Python. It is easy to use and intuitive to set up to production. The library uses a highly optimized approximate nearest neighbor search algorithm (HNSW) to search for nearest neighbors. The library allows you to search for nearest neighbors...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    LightFM

    LightFM

    A Python implementation of LightFM, a hybrid recommendation algorithm

    LightFM is a Python implementation of a number of popular recommendation algorithms for both implicit and explicit feedback, including efficient implementation of BPR and WARP ranking losses. It's easy to use, fast (via multithreaded model estimation), and produces high-quality results. It also makes it possible to incorporate both item and user metadata into the traditional matrix factorization algorithms. It represents each user and item as the sum of the latent representations of their...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 23
    PARL

    PARL

    A high-performance distributed training framework

    PARL is a scalable reinforcement learning framework built on top of PaddlePaddle. It focuses on modularity and ease of use, supporting distributed training and a variety of RL algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    FFCV

    FFCV

    Fast Forward Computer Vision (and other ML workloads!)

    ffcv is a drop-in data loading system that dramatically increases data throughput in model training. From gridding to benchmarking to fast research iteration, there are many reasons to want faster model training. Below we present premade codebases for training on ImageNet and CIFAR, including both (a) extensible codebases and (b) numerous premade training configurations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    auto-sklearn

    auto-sklearn

    Automated machine learning with scikit-learn

    auto-sklearn is an automated machine learning toolkit and a drop-in replacement for a scikit-learn estimator. auto-sklearn frees a machine learning user from algorithm selection and hyperparameter tuning. It leverages recent advantages in Bayesian optimization, meta-learning and ensemble construction. Auto-sklearn 2.0 includes latest research on automatically configuring the AutoML system itself and contains a multitude of improvements which speed up the fitting the AutoML system. auto-sklearn...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.