Showing 445 open source projects for "python accounting source code"

View related business solutions
  • Resolve Support Tickets 2x Faster​ with ServoDesk Icon
    Resolve Support Tickets 2x Faster​ with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • Fully managed relational database service for MySQL, PostgreSQL, and SQL Server Icon
    Fully managed relational database service for MySQL, PostgreSQL, and SQL Server

    Focus on your application, and leave the database to us

    Cloud SQL manages your databases so you don't have to, so your business can run without disruption. It automates all your backups, replication, patches, encryption, and storage capacity increases to give your applications the reliability, scalability, and security they need.
    Try for free
  • 1
    Kubeflow pipelines

    Kubeflow pipelines

    Machine Learning Pipelines for Kubeflow

    Kubeflow is a machine learning (ML) toolkit that is dedicated to making deployments of ML workflows on Kubernetes simple, portable, and scalable. A pipeline is a description of an ML workflow, including all of the components in the workflow and how they combine in the form of a graph. The pipeline includes the definition of the inputs (parameters) required to run the pipeline and the inputs and outputs of each component. A pipeline component is a self-contained set of user code, packaged as...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Xorbits Inference

    Xorbits Inference

    Replace OpenAI GPT with another LLM in your app

    Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop. Xorbits Inference(Xinference) is a powerful and versatile library designed to serve language, speech recognition, and multimodal models. With Xorbits...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Automated RMM Tools | RMM Software Icon
    Automated RMM Tools | RMM Software

    Proactively monitor, manage, and support client networks with ConnectWise Automate

    Out-of-the-box scripts. Around-the-clock monitoring. Unmatched automation capabilities. Start doing more with less and exceed service delivery expectations.
    Learn More
  • 5
    PPTAgent

    PPTAgent

    PPTAgent: Generating and Evaluating Presentations

    PPTAgent is a research system for generating and evaluating slide decks that goes beyond simple text-to-slides. It follows a two-stage, edit-based workflow: first it analyzes reference presentations to infer slide roles and structure, then it drafts an outline and iteratively performs editing actions to produce new slides. The project includes both the generation agent and an evaluation framework, PPTEval, to score content quality, design, and coherence. The repository highlights the EMNLP...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines. You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Skyvern

    Skyvern

    Automate browser-based workflows with LLMs and Computer Vision

    Skyvern uses a combination of computer vision and AI to understand content on a webpage, making it adaptable to any website. Skyvern takes instructions in natural language, allowing it to execute complex objectives with simple commands. Skyvern is an API-first product. Workflows execute in the cloud, allowing it to run hundreds of workflows at the same time. Skyvern's AI decisions come with built-in explanations, providing clear summaries and justifications for every action. Support for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Turn more customers into advocates. Icon
    Turn more customers into advocates.

    Fight skyrocketing paid media costs by turning your customers into a primary vehicle for acquisition, awareness, and activation with Extole.

    The platform's advanced capabilities ensure companies get the most out of their referral programs. Leverage custom events, profiles, and attributes to enable dynamic, audience-specific referral experiences. Use first-party data to tailor customer segment messaging, rewards, and engagement strategies. Use our flexible APIs to build management capabilities and consumer experiences–headlessly or hybrid. We have all the tools you need to build scalable, secure, and high-performing referral programs.
    Learn More
  • 10
    AWS MCP Servers

    AWS MCP Servers

    Helping you get the most out of AWS, wherever you use MCP

    AWS MCP Servers are a collection of remotely hosted, fully-managed Model Context Protocol (MCP) servers by AWS, providing AI applications with real-time access to AWS documentation, API references, best practices, and infrastructure-management capabilities via natural-language workflows. An MCP Server is a lightweight program that exposes specific capabilities through the standardized Model Context Protocol. Host applications (such as chatbots, IDEs, and other AI tools) have MCP clients that...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Datasets

    Datasets

    Hub of ready-to-use datasets for ML models

    Datasets is a library for easily accessing and sharing datasets, and evaluation metrics for Natural Language Processing (NLP), computer vision, and audio tasks. Load a dataset in a single line of code, and use our powerful data processing methods to quickly get your dataset ready for training in a deep learning model. Backed by the Apache Arrow format, process large datasets with zero-copy reads without any memory constraints for optimal speed and efficiency. We also feature a deep...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    EvaDB

    EvaDB

    Database system for building simpler and faster AI-powered application

    Over the last decade, AI models have radically changed the world of natural language processing and computer vision. They are accurate on various tasks ranging from question answering to object tracking in videos. To use an AI model, the user needs to program against multiple low-level libraries, like PyTorch, Hugging Face, Open AI, etc. This tedious process often leads to a complex AI app that glues together these libraries to accomplish the given task. This programming complexity prevents...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    NeuralProphet

    NeuralProphet

    A simple forecasting package

    NeuralProphet bridges the gap between traditional time-series models and deep learning methods. It's based on PyTorch and can be installed using pip. A Neural Network based Time-Series model, inspired by Facebook Prophet and AR-Net, built on PyTorch. You can find the datasets used in the tutorials, including data preprocessing examples, in our neuralprophet-data repository. The documentation page may not we entirely up to date. Docstrings should be reliable, please refer to those when in...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Style Aligned

    Style Aligned

    Official code for Style Aligned Image Generation via Shared Attention

    StyleAligned is a diffusion-model editing technique and codebase that preserves the visual “style” of an original image while applying new semantic edits driven by text. Instead of fully re-generating an image—and risking changes to lighting, texture, or rendering choices—the method aligns internal features across denoising steps so the target edit inherits the source style. This alignment acts like a constraint on the model’s evolution, steering composition, palette, and brushwork even as...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    LLaMA Models

    LLaMA Models

    Utilities intended for use with Llama models

    This repository serves as the central hub for the Llama foundation model family, consolidating model cards, licenses and use policies, and utilities that support inference and fine-tuning across releases. It ties together other stack components (like safety tooling and developer SDKs) and provides canonical references for model variants and their intended usage. The project’s issues and releases reflect an actively used coordination point for the ecosystem, where guidance, utilities, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    OpenFold

    OpenFold

    Trainable, memory-efficient, and GPU-friendly PyTorch reproduction

    OpenFold carefully reproduces (almost) all of the features of the original open source inference code (v2.0.1). The sole exception is model ensembling, which fared poorly in DeepMind's own ablation testing and is being phased out in future DeepMind experiments. It is omitted here for the sake of reducing clutter. In cases where the Nature paper differs from the source, we always defer to the latter. OpenFold is trainable in full precision, half precision, or bfloat16 with or without...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Prompt Engineering Interactive Tutorial

    Prompt Engineering Interactive Tutorial

    Anthropic's Interactive Prompt Engineering Tutorial

    Prompt-eng-interactive-tutorial is a comprehensive, hands-on tutorial that teaches the craft of prompt engineering with Claude through guided, executable lessons. It starts with the anatomy of a good prompt and moves into techniques that deliver the “80/20” gains—separating instructions from data, specifying schemas, and setting evaluation criteria. The course leans heavily on realistic failure modes (ambiguity, hallucination, brittle instructions) and shows how to iteratively debug prompts...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    DreamCraft3D is DeepSeek’s generative 3D modeling framework / model family that likely extends their earlier 3D efforts (e.g. Shap-E or Point-E style models) with more capability, control, or expression. The name suggests a “dream crafting” metaphor—users probably supply textual or image prompts and generate 3D assets (point clouds, meshes, scenes). The repository includes model code, inference scripts, sample prompts, and possibly dataset preparation pipelines. It may integrate rendering or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models...
    Downloads: 0 This Week
    Last Update:
    See Project