Showing 641 open source projects for "apache"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    KerasTuner

    KerasTuner

    A Hyperparameter Tuning Library for Keras

    KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily configure your search space with a define-by-run syntax, then leverage one of the available search algorithms to find the best hyperparameter values for your models. KerasTuner comes with Bayesian Optimization, Hyperband, and Random Search algorithms built-in, and is also designed to be easy for researchers to extend in order to experiment with new search...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    TensorFlow Datasets

    TensorFlow Datasets

    TFDS is a collection of datasets ready to use with TensorFlow,

    TensorFlow Datasets is a collection of datasets ready to use, with TensorFlow or other Python ML frameworks, such as Jax. All datasets are exposed as tf.data. Datasets , enabling easy-to-use and high-performance input pipelines. To get started see the guide and our list of datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Pruna AI

    Pruna AI

    Pruna is a model optimization framework built for developers

    Pruna is an open-source, self-hostable AI inference engine designed to help teams deploy and manage large language models (LLMs) efficiently across private or hybrid infrastructures. Built with performance and developer ergonomics in mind, Pruna simplifies inference workflows by enabling multi-model orchestration, autoscaling, GPU resource allocation, and compatibility with popular open-source models. It is ideal for companies or teams looking to reduce reliance on external APIs while...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    Lingua-Py

    Lingua-Py

    The most accurate natural language detection library for Python

    Its task is simple: It tells you which language some text is written in. This is very useful as a preprocessing step for linguistic data in natural language processing applications such as text classification and spell checking. Other use cases, for instance, might include routing e-mails to the right geographically located customer service department, based on the e-mails' languages. Language detection is often done as part of large machine learning frameworks or natural language processing...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    uAgents

    uAgents

    A fast and lightweight framework for creating decentralized agents

    uAgents is a library developed by Fetch.ai that allows for creating autonomous AI agents in Python. With simple and expressive decorators, you can have an agent that performs various tasks on a schedule or takes action on various events.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Flyte
    Build production-grade data and ML workflows, hassle-free The infinitely scalable and flexible workflow orchestration platform that seamlessly unifies data, ML and analytics stacks. Don’t let friction between development and production slow down the deployment of new data/ML workflows and cause an increase in production bugs. Flyte enables rapid experimentation with production-grade software. Debug in the cloud by iterating on the workflows locally to achieve tighter feedback loops. As your...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    PEFT

    PEFT

    State-of-the-art Parameter-Efficient Fine-Tuning

    Parameter-Efficient Fine-Tuning (PEFT) methods enable efficient adaptation of pre-trained language models (PLMs) to various downstream applications without fine-tuning all the model's parameters. Fine-tuning large-scale PLMs is often prohibitively costly. In this regard, PEFT methods only fine-tune a small number of (extra) model parameters, thereby greatly decreasing the computational and storage costs. Recent State-of-the-Art PEFT techniques achieve performance comparable to that of full...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based). At least one of these three backends must be available in order render...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    GLM-TTS

    GLM-TTS

    Controllable & emotion-expressive zero-shot TTS

    GLM-TTS is an advanced text-to-speech synthesis system built on large language model technologies that focuses on producing high-quality, expressive, and controllable spoken output, including features like emotion modulation and zero-shot voice cloning. It uses a two-stage architecture where a generative LLM first converts text into intermediate speech token sequences and then a Flow-based neural model converts those tokens into natural audio waveforms, enabling rich prosody and voice...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    FastKoko

    FastKoko

    Dockerized FastAPI wrapper for Kokoro-82M text-to-speech model

    FastKoko is a self-hosted text-to-speech server built around the Kokoro-82M model and exposed through a FastAPI backend. It is designed to be easy to deploy via Docker, with separate CPU and GPU images so that users can choose between pure CPU inference and NVIDIA GPU acceleration. The project exposes an OpenAI-compatible speech endpoint, which means existing code that talks to the OpenAI audio API can often be pointed at a Kokoro-FastAPI instance with minimal changes. It supports multiple...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 14
    txtai

    txtai

    Build AI-powered semantic search applications

    txtai executes machine-learning workflows to transform data and build AI-powered semantic search applications. Traditional search systems use keywords to find data. Semantic search applications have an understanding of natural language and identify results that have the same meaning, not necessarily the same keywords. Backed by state-of-the-art machine learning models, data is transformed into vector representations for search (also known as embeddings). Innovation is happening at a rapid...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 15
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    Granite TSFM

    Granite TSFM

    Foundation Models for Time Series

    granite-tsfm collects public notebooks, utilities, and serving components for IBM’s Time Series Foundation Models (TSFM), giving practitioners a practical path from data prep to inference for forecasting and anomaly-detection use cases. The repository focuses on end-to-end workflows: loading data, building datasets, fine-tuning forecasters, running evaluations, and serving models. It documents the currently supported Python versions and points users to where the core TSFM models are hosted...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    MiniMind

    MiniMind

    Train a 26M-parameter GPT from scratch in just 2h

    minimind is a framework that enables users to train a 26-million-parameter GPT (Generative Pre-trained Transformer) model from scratch in approximately two hours. It provides a streamlined process for data preparation, model training, and evaluation, making it accessible for individuals and organizations to develop their own language models without extensive computational resources.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Intel Extension for Transformers

    Intel Extension for Transformers

    Build your chatbot within minutes on your favorite device

    Intel Extension for Transformers is an innovative toolkit designed to accelerate Transformer-based models on Intel platforms, including CPUs and GPUs. It offers state-of-the-art compression techniques for Large Language Models (LLMs) and provides tools to build chatbots within minutes on various devices. The extension aims to optimize the performance of Transformer-based models, making them more efficient and accessible.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Dataherald

    Dataherald

    Interact with your SQL database, Natural Language to SQL using LLMs

    Dataherald is a platform that allows users to query structured databases using natural language, automatically converting plain English into SQL. It is designed to enable real-time, self-service analytics without needing technical knowledge of databases, making business data easily accessible to non-technical users. Dataherald focuses on speed, accuracy, and scalability for enterprise settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Mctx

    Mctx

    Monte Carlo tree search in JAX

    mctx is a Monte Carlo Tree Search (MCTS) library developed by Google DeepMind for reinforcement learning research. It enables efficient and flexible implementation of MCTS algorithms, including those used in AlphaZero and MuZero.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Zeta

    Zeta

    Build high-performance AI models with modular building blocks

    zeta is a deep learning library focused on providing cutting-edge AI and neural network models with a strong emphasis on research-grade architectures. It includes state-of-the-art implementations for rapid experimentation and model building.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Mem0

    Mem0

    The Memory layer for AI Agents

    Mem0 is a self-improving memory layer designed for Large Language Model (LLM) applications, enabling personalized AI experiences that save costs and delight users. It remembers user preferences, adapts to individual needs, and continuously improves over time. Key features include enhancing future conversations by building smarter AI that learns from every interaction, reducing LLM costs by up to 80% through intelligent data filtering, delivering more accurate and personalized AI outputs by...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Tensorforce

    Tensorforce

    A TensorFlow library for applied reinforcement learning

    Tensorforce is an open-source deep reinforcement learning framework built on TensorFlow, emphasizing modularized design and straightforward usability for applied research and practice.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SetFit

    SetFit

    Efficient few-shot learning with Sentence Transformers

    SetFit is an efficient and prompt-free framework for few-shot fine-tuning of Sentence Transformers. It achieves high accuracy with little labeled data - for instance, with only 8 labeled examples per class on the Customer Reviews sentiment dataset, SetFit is competitive with fine-tuning RoBERTa Large on the full training set of 3k examples.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MegaParse

    MegaParse

    File Parser optimised for LLM Ingestion with no loss

    MegaParse is a file parser optimized for Large Language Model (LLM) ingestion, ensuring no loss of information. It efficiently parses various document formats, such as PDFs, DOCX, and PPTX, converting them into formats ideal for processing by LLMs. This tool is essential for applications that require accurate and comprehensive data extraction from diverse document types.
    Downloads: 0 This Week
    Last Update:
    See Project