Showing 296 open source projects for "php-simple-html-dom-parser"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    Optax

    Optax

    Optax is a gradient processing and optimization library for JAX

    Optax is a gradient processing and optimization library for JAX. It is designed to facilitate research by providing building blocks that can be recombined in custom ways in order to optimize parametric models such as, but not limited to, deep neural networks. We favor focusing on small composable building blocks that can be effectively combined into custom solutions. Others may build upon these basic components in more complicated abstractions. Whenever reasonable, implementations prioritize...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Scrapling

    Scrapling

    An undetectable, powerful, flexible, high-performance Python library

    Scrapling is a Python scraping framework built for the modern web, combining high-performance fetchers with a rapid parsing engine to handle dynamic sites and anti-bot countermeasures. It emphasizes being “undetectable,” flexible, and fast, offering an approachable API for both experienced scrapers and newcomers. The library targets the full scraping pipeline: session handling, fetching, rendering when needed, parsing, and export—while keeping ergonomics front and center. Community posts and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Taipy

    Taipy

    Turns Data and AI algorithms into production-ready web applications

    From simple pilots to production-ready web applications in no time. No more compromise on performance, customization, and scalability. Taipy enhances performance with caching control of graphical events, optimizing rendering by selectively updating graphical components only upon interaction. Effortlessly manage massive datasets with Taipy's built-in decimator for charts, intelligently reducing the number of data points to save time and memory without losing the essence of your data's shape. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Original Buy Center Software. Icon
    The Original Buy Center Software.

    Never Go To The Auction Again.

    VAN sources private-party vehicles from over 20 platforms and provides all necessary tools to communicate with sellers and manage opportunities. Franchise and Independent dealers can boost their buy center strategies with our advanced tools and an experienced Acquisition Coaching™ team dedicated to your success.
    Learn More
  • 5
    SWE-agent

    SWE-agent

    SWE-agent takes a GitHub issue and tries to automatically fix it

    ...GPT-4) into software engineering agents that can resolve issues in real GitHub repositories. On the SWE-bench, the SWE-agent resolves 12.47% of issues, achieving state-of-the-art performance on the full test set. We accomplish our results by designing simple LM-centric commands and feedback formats to make it easier for the LM to browse the repository, and view, edit, and execute code files. We call this an Agent-Computer Interface (ACI).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and systems structure to the messy and often entirely manual process of training data creation and management, starting by empowering users to programmatically label, build, and manage training data. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Skyvern

    Skyvern

    Automate browser-based workflows with LLMs and Computer Vision

    Skyvern uses a combination of computer vision and AI to understand content on a webpage, making it adaptable to any website. Skyvern takes instructions in natural language, allowing it to execute complex objectives with simple commands. Skyvern is an API-first product. Workflows execute in the cloud, allowing it to run hundreds of workflows at the same time. Skyvern's AI decisions come with built-in explanations, providing clear summaries and justifications for every action. Support for proxies, with support for country, state, or even precise zip-code level targeting. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    BertViz

    BertViz

    BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.)

    BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. BertViz extends the Tensor2Tensor visualization tool by Llion Jones, providing multiple views that each offer a unique lens into the attention mechanism. The head view visualizes attention for one or more attention heads in the same layer. It is based on the excellent Tensor2Tensor visualization tool. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Kaleidoscope-SDK

    Kaleidoscope-SDK

    User toolkit for analyzing and interfacing with Large Language Models

    kaleidoscope-sdk is a Python module used to interact with large language models hosted via the Kaleidoscope service available at: https://github.com/VectorInstitute/kaleidoscope. It provides a simple interface to launch LLMs on an HPC cluster, asking them to perform basic features like text generation, but also retrieve intermediate information from inside the model, such as log probabilities and activations. Users must authenticate using their Vector Institute cluster credentials. This can be done interactively instantiating a client object. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place. Icon
    Incredable is the first DLT-secured platform that allows you to save time, eliminate errors, and ensure your organization is compliant all in one place.

    For healthcare Providers and Facilities

    Incredable streamlines and simplifies the complex process of medical credentialing for hospitals and medical facilities, helping you save valuable time, reduce costs, and minimize risks. With Incredable, you can effortlessly manage all your healthcare providers and their credentials within a single, unified platform. Our state-of-the-art technology ensures top-notch data security, giving you peace of mind.
    Learn More
  • 10
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt. The core concept of the system is visual, and the name of the interface corresponds to it one-to-one, so it is also uniform and extensible. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ArXiv MCP Server

    ArXiv MCP Server

    A Model Context Protocol server for searching and analyzing arXiv

    arxiv-mcp-server bridges AI assistants and the arXiv repository through a clean MCP interface, enabling search, metadata retrieval, and content access without bespoke scraping. With simple tools like “search” and “fetch,” an agent can find papers, pull abstracts, and download PDFs for downstream summarization or analysis. The project includes packaging and CI to publish to PyPI, plus tests and linting for reliability. Issue threads show feature requests such as extracting embedded LaTeX and improving markdown conversion, reflecting active community use in research flows. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy. Reported results highlight dramatic speedups in time-to-first-token and competitive quality versus...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    ...A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well with simple linear probes and minimal fine-tuning. The repository provides training recipes, data pipelines, and evaluation utilities for image JEPA variants and often includes ablations that illuminate which masking and architectural choices matter. Because the objective is non-autoregressive and operates in embedding space, JEPA tends to be compute-efficient and stable at scale. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative training. The library supports both continuous-time flows (via differential equations) and discrete-time analogues, giving flexibility in design and tradeoffs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Bard API

    Bard API

    The unofficial python package that returns response of Google Bard

    The Python package returns a response of Google Bard through the value of the cookie. This package is designed for application to the Python package ExceptNotifier and Co-Coder. Please note that the bardapi is not a free service, but rather a tool provided to assist developers with testing certain functionalities due to the delayed development and release of Google Bard's API. It has been designed with a lightweight structure that can easily adapt to the emergence of an official API....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Recurrent Interface Network (RIN)

    Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN), for highly efficient generation of images and video without cascading networks, in Pytorch. The author unawaredly reinvented the induced set-attention block from the set transformers paper. They also combine this with the self-conditioning technique from the Bit Diffusion paper, specifically for the latents. The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    ...It contains all the major CL benchmarks (similar to what has been done for torchvision). Provides all the necessary utilities concerning model training. This includes simple and efficient ways of implementing new continual learning strategies as well as a set of pre-implemented CL baselines and state-of-the-art algorithms you will be able to use for comparison! Avalanche the first experiment of an End-to-end Library for reproducible continual learning research & development where you can find benchmarks, algorithms, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    ...In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support, distributed graph learning via Quiver, a large number of common benchmark datasets (based on simple interfaces to create your own), the GraphGym experiment manager, and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. All it takes is 10-20 lines of code to get started with training a GNN model (see the next section for a quick tour).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of functionality of PyTorch Geometric to other packages, which needs to be additionally installed. These packages come with their own CPU and GPU kernel implementations based on C++/CUDA extensions. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    ConsistencyDecoder

    ConsistencyDecoder

    Consistency Distilled Diff VAE

    ...Instead of relying solely on the standard GAN or VAE decoder, this approach leverages a Consistency Distilled Diff VAE, designed to produce higher-quality and more stable outputs from encoded latents. The project provides a simple API for encoding with a Stable Diffusion VAE and decoding using the new consistency model, allowing for side-by-side comparisons with traditional decoders. It demonstrates how consistency models can enhance visual fidelity while maintaining efficiency, reducing artifacts common in GAN-decoded outputs. The repository includes installation instructions, usage examples, and visual comparisons to highlight improvements. ...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    Gemma

    Gemma

    Gemma open-weight LLM library, from Google DeepMind

    Gemma, developed by Google DeepMind, is a family of open-weights large language models (LLMs) built upon the research and technology behind Gemini. This repository provides the official implementation of the Gemma PyPI package, a JAX-based library that enables users to load, interact with, and fine-tune Gemma models. The framework supports both text and multi-modal input, allowing natural language conversations that incorporate visual content such as images. It includes APIs for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    ...The architecture is designed to scale: spatiotemporal ViT backbones, flexible masking schedules, and efficient sampling let it train on long clips while remaining stable. Trained representations transfer well to downstream tasks such as action recognition, temporal localization, and video retrieval, often with simple linear probes or light fine-tuning. The repository typically includes end-to-end recipes—data pipelines, augmentation policies, training scripts, and evaluation harnesses.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    AudioCraft

    AudioCraft

    Audiocraft is a library for audio processing and generation

    ...Both models operate over discrete audio tokens produced by a neural codec (EnCodec), which acts like a tokenizer for waveforms and enables efficient sequence modeling. The repo provides inference scripts, checkpoints, and simple Python APIs so you can generate clips from prompts or incorporate the models into applications. It also contains training code and recipes, so researchers can fine-tune on custom data or explore new objectives without building infrastructure from scratch. Example notebooks, CLI tools, and audio utilities help with prompt design, conditioning on reference audio, and post-processing to produce ready-to-share outputs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    SuperDuperDB

    SuperDuperDB

    Integrate, train and manage any AI models and APIs with your database

    Build and manage AI applications easily without needing to move your data to complex pipelines and specialized vector databases. Integrate AI and vector search directly with your database including real-time inference and model training. Just using Python. A single scalable deployment of all your AI models and APIs which is automatically kept up-to-date as new data is processed immediately. No need to introduce an additional database and duplicate your data to use vector search and build on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PySyft

    PySyft

    Data science on data without acquiring a copy

    Most software libraries let you compute over the information you own and see inside of machines you control. However, this means that you cannot compute on information without first obtaining (at least partial) ownership of that information. It also means that you cannot compute using machines without first obtaining control over those machines. This is very limiting to human collaboration and systematically drives the centralization of data, because you cannot work with a bunch of data...
    Downloads: 0 This Week
    Last Update:
    See Project