Showing 841 open source projects for "python q learning"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    DeepLabCut

    DeepLabCut

    Implementation of DeepLabCut

    ...This package is collaboratively developed by the Mathis Group & Mathis Lab at EPFL (releases prior to 2.1.9 were developed at Harvard University). The code is freely available and easy to install in a few clicks with Anaconda (and pypi). DeepLabCut is an open-source Python package for animal pose estimation.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 2
    LightZero

    LightZero

    [NeurIPS 2023 Spotlight] LightZero

    LightZero is an efficient, scalable, and open-source framework implementing MuZero, a powerful model-based reinforcement learning algorithm that learns to predict rewards and transitions without explicit environment models. Developed by OpenDILab, LightZero focuses on providing a highly optimized and user-friendly platform for both academic research and industrial applications of MuZero and similar algorithms.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Xfl

    Xfl

    An Efficient and Easy-to-use Federated Learning Framework

    XFL is a lightweight, high-performance federated learning framework supporting both horizontal and vertical FL. It integrates homomorphic encryption, DP, secure MPC, and optimizes network resilience. Compatible with major ML libraries and deployable via Docker or Conda.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    Featuretools

    Featuretools

    An open source python library for automated feature engineering

    An open source Python framework for automated feature engineering. Featuretools automatically creates features from temporal and relational datasets. Featuretools uses DFS for automated feature engineering. You can combine your raw data with what you know about your data to build meaningful features for machine learning and predictive modeling. Featuretools provides APIs to ensure only valid data is used for calculations, keeping your feature vectors safe from common label leakage problems. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines. You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    MLflow

    MLflow

    Open source platform for the machine learning lifecycle

    MLflow is a platform to streamline machine learning development, including tracking experiments, packaging code into reproducible runs, and sharing and deploying models. MLflow offers a set of lightweight APIs that can be used with any existing machine learning application or library (TensorFlow, PyTorch, XGBoost, etc), wherever you currently run ML code (e.g. in notebooks, standalone applications or the cloud).
    Downloads: 4 This Week
    Last Update:
    See Project
  • 8
    Multi-Agent Orchestrator

    Multi-Agent Orchestrator

    Flexible and powerful framework for managing multiple AI agents

    Multi-Agent Orchestrator is an AI coordination framework that enables multiple intelligent agents to work together to complete complex, multi-step workflows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    spaCy

    spaCy

    Industrial-strength Natural Language Processing (NLP)

    spaCy is a library built on the very latest research for advanced Natural Language Processing (NLP) in Python and Cython. Since its inception it was designed to be used for real world applications-- for building real products and gathering real insights. It comes with pretrained statistical models and word vectors, convolutional neural network models, easy deep learning integration and so much more. spaCy is the fastest syntactic parser in the world according to independent benchmarks, with an accuracy within 1% of the best available. ...
    Downloads: 10 This Week
    Last Update:
    See Project
  • Cloud data warehouse to power your data-driven innovation Icon
    Cloud data warehouse to power your data-driven innovation

    BigQuery is a serverless and cost-effective enterprise data warehouse that works across clouds and scales with your data.

    BigQuery Studio provides a single, unified interface for all data practitioners of various coding skills to simplify analytics workflows from data ingestion and preparation to data exploration and visualization to ML model creation and use. It also allows you to use simple SQL to access Vertex AI foundational models directly inside BigQuery for text processing tasks, such as sentiment analysis, entity extraction, and many more without having to deal with specialized models.
    Try for free
  • 10
    Transformers

    Transformers

    State-of-the-art Machine Learning for Pytorch, TensorFlow, and JAX

    Transformers provides APIs and tools to easily download and train state-of-the-art pre-trained models. Using pre-trained models can reduce your compute costs, carbon footprint, and save you the time and resources required to train a model from scratch. These models support common tasks in different modalities. Text, for tasks like text classification, information extraction, question answering, summarization, translation, text generation, in over 100 languages. Images, for tasks like image...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    spaCy models

    spaCy models

    Models for the spaCy Natural Language Processing (NLP) library

    spaCy is designed to help you do real work, to build real products, or gather real insights. The library respects your time, and tries to avoid wasting it. It's easy to install, and its API is simple and productive. spaCy excels at large-scale information extraction tasks. It's written from the ground up in carefully memory-managed Cython. If your application needs to process entire web dumps, spaCy is the library you want to be using. Since its release in 2015, spaCy has become an industry...
    Downloads: 18 This Week
    Last Update:
    See Project
  • 12
    DeepSeed

    DeepSeed

    Deep learning optimization library making distributed training easy

    DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective. DeepSpeed delivers extreme-scale model training for everyone, from data scientists training on massive supercomputers to those training on low-end clusters or even on a single GPU. Using current generation of GPU clusters with hundreds of devices, 3D parallelism of DeepSpeed can efficiently train deep learning models with trillions of parameters. With just a single GPU,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    sktime

    sktime

    A unified framework for machine learning with time series

    sktime is a library for time series analysis in Python. It provides a unified interface for multiple time series learning tasks. Currently, this includes time series classification, regression, clustering, annotation, and forecasting. It comes with time series algorithms and scikit-learn compatible tools to build, tune and validate time series models. Our objective is to enhance the interoperability and usability of the time series analysis ecosystem in its entirety. sktime provides a unified interface for distinct but related time series learning tasks. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Oumi

    Oumi

    Everything you need to build state-of-the-art foundation models

    Oumi is an open-source framework that provides everything needed to build state-of-the-art foundation models, end-to-end. It aims to simplify the development of large-scale machine-learning models.
    Downloads: 12 This Week
    Last Update:
    See Project
  • 15
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    tsai is an open-source deep learning package built on top of Pytorch & fastai focused on state-of-the-art techniques for time series tasks like classification, regression, forecasting, and imputation. Starting with tsai 0.3.0 tsai will only install hard dependencies. Other soft dependencies (which are only required for selected tasks) will not be installed by default (this is the recommended approach. If you require any of the dependencies that is not installed, tsai will ask you to install...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 17
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    SHAP

    SHAP

    A game theoretic approach to explain the output of ml models

    SHAP (SHapley Additive exPlanations) is a game theoretic approach to explain the output of any machine learning model. It connects optimal credit allocation with local explanations using the classic Shapley values from game theory and their related extensions. While SHAP can explain the output of any machine learning model, we have developed a high-speed exact algorithm for tree ensemble methods. Fast C++ implementations are supported for XGBoost, LightGBM, CatBoost, scikit-learn and pyspark...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    PyTextRank

    PyTextRank

    Python implementation of TextRank algorithms

    PyTextRank is a Python implementation of TextRank as a spaCy pipeline extension, for graph-based natural language work -- and related knowledge graph practices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    supabase-py

    supabase-py

    Python Client for Supabase. Query Postgres from Flask, Django

    Python Client for Supabase. Query Postgres from Flask, Django, FastAPI. Python user authentication, security policies, edge functions, file storage, and realtime data streaming. Good first issue.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    OSWorld

    OSWorld

    Benchmarking Multimodal Agents for Open-Ended Tasks

    OSWorld is an open-source synthetic world environment designed for embodied AI research and multi-agent learning. It provides a richly simulated 3D world where multiple agents can interact, perform tasks, and learn complex behaviors. OSWorld emphasizes multi-modal interaction, enabling agents to process visual, auditory, and symbolic data for grounded learning in a simulated world.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    EvoTorch

    EvoTorch

    Advanced evolutionary computation library built on top of PyTorch

    EvoTorch is an evolutionary optimization framework built on top of PyTorch, developed by NNAISENSE. It is designed for large-scale optimization problems, particularly those that require evolutionary algorithms rather than gradient-based methods.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Evidently

    Evidently

    Evaluate and monitor ML models from validation to production

    Evidently is an open-source Python library for data scientists and ML engineers. It helps evaluate, test, and monitor ML models from validation to production. It works with tabular, text data and embeddings.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 24
    TorchMetrics AI

    TorchMetrics AI

    Machine learning metrics for distributed, scalable PyTorch application

    TorchMetrics is a collection of 100+ PyTorch metrics implementations and an easy-to-use API to create custom metrics.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a...
    Downloads: 0 This Week
    Last Update:
    See Project