Showing 1863 open source projects for "linux-firmware"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    GLM-4.1V

    GLM-4.1V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.1V — often referred to as a smaller / lighter version of the GLM-V family — offers a more resource-efficient option for users who want multimodal capabilities without requiring large compute resources. Though smaller in scale, GLM-4.1V maintains competitive performance, particularly impressive on many benchmarks for models of its size: in fact, on a number of multimodal reasoning and vision-language tasks it outperforms some much larger models from other families. It represents a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Robyn

    Robyn

    Experimental, AI/ML-powered and open sourced Marketing Mix Modeling

    Robyn is an open-source, AI/ML-powered Marketing Mix Modeling (MMM) toolkit developed by Meta Marketing Science under the “facebookexperimental” GitHub umbrella. Its goal is to democratize rigorous MMM: what traditionally required expert statisticians and expensive consulting becomes accessible to any company with data. Robyn takes in historical data (spends on different marketing channels, conversions, or revenue, and optional context or organic-media variables) and uses a combination of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    Sa2VA

    Sa2VA

    Official Repo For "Sa2VA: Marrying SAM2 with LLaVA

    Sa2VA is a cutting-edge open-source multi-modal large language model (MLLM) developed by ByteDance that unifies dense segmentation, visual understanding, and language-based reasoning across both images and videos. It merges the segmentation power of a state-of-the-art video segmentation model (based on SAM‑2) with the vision-language reasoning capabilities of a strong LLM backbone (derived from models like InternVL2.5 / Qwen-VL series), yielding a system that can answer questions about...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    UI-TARS

    UI-TARS

    UI-TARS-desktop version that can operate on your local personal device

    UI-TARS is an open-source multimodal “GUI agent” created by ByteDance: a model designed to perceive raw screenshots (or rendered UI frames), reason about what needs to be done, and then perform real interactions with graphical user interfaces (GUIs) — like clicking, typing, navigating menus — across desktop, browser, mobile, or game environments. Rather than relying on rigid, manually scripted UI automation, UI-TARS uses a unified vision-language model (VLM) that integrates perception,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Step1X-3D

    Step1X-3D

    High-Fidelity and Controllable Generation of Textured 3D Assets

    Step1X-3D is an open-source framework for generating high-fidelity textured 3D assets from scratch — both their geometry and surface textures — using modern generative AI techniques. It combines a hybrid architecture: a geometry generation stage using a VAE-DiT model to output a watertight 3D representation (e.g. TSDF surface), and a texture synthesis stage that conditions on geometry and optionally reference input (or prompts) to produce view-consistent textures using a diffusion-based...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Step-Audio 2

    Step-Audio 2

    Multi-modal large language model designed for audio understanding

    Step-Audio2 is an advanced, end-to-end multimodal large language model designed for high-fidelity audio understanding and natural speech conversation: unlike many pipelines that separate speech recognition, processing, and synthesis, Step-Audio2 processes raw audio, reasons about semantic and paralinguistic content (like emotion, speaker characteristics, non-verbal cues), and can generate contextually appropriate responses — including potentially generating or transforming audio output. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Step-Audio

    Step-Audio

    Open-source framework for intelligent speech interaction

    Step-Audio is a unified, open-source framework aimed at building intelligent speech systems that combine both comprehension and generation: it integrates large language models (LLMs) with speech input/output to handle not only semantic understanding but also rich vocal characteristics like tone, style, dialect, emotion, and prosody. The design moves beyond traditional separate-component pipelines (ASR → text model → TTS), instead offering a multimodal model that ingests speech or audio and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Say goodbye to broken revenue funnels and poor customer experiences Icon
    Say goodbye to broken revenue funnels and poor customer experiences

    Connect and coordinate your data, signals, tools, and people at every step of the customer journey.

    LeanData is a Demand Management solution that supports all go-to-market strategies such as account-based sales development, geo-based territories, and more. LeanData features a visual, intuitive workflow native to Salesforce that enables users to view their entire lead flow in one interface. LeanData allows users to access the drag-and-drop feature to route their leads. LeanData also features an algorithms match that uses multiple fields in Salesforce.
    Learn More
  • 10
    VideoChat

    VideoChat

    Real-time voice interactive digital human

    VideoChat is a real-time voice-interactive “digital human” system that combines automatic speech recognition, large language models, text-to-speech, and talking-head generation into a single conversational pipeline. It supports both pure end-to-end voice solutions based on multimodal large language models (GLM-4-Voice feeding directly into talking-head generation) and a more traditional cascaded pipeline using ASR → LLM → TTS → talking head. It is built as a Gradio Python demo, exposing a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MiniMax-MCP

    MiniMax-MCP

    Official MiniMax Model Context Protocol (MCP) server

    MiniMax-MCP is the official Model Context Protocol (MCP) server for accessing MiniMax’s multimodal generative APIs from MCP-compatible clients. It acts as a bridge between tools like Claude Desktop, Cursor, Windsurf, OpenAI Agents, and the MiniMax platform, exposing capabilities such as text-to-speech, voice cloning, image generation, text-to-image, video generation, image-to-video, text-to-video, and music generation. The server is written in Python and distributed under the MIT license,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    files-to-prompt

    files-to-prompt

    Concatenate a directory full of files into a single prompt

    files-to-prompt is a Python command-line tool that takes one or more files or entire directories and concatenates their contents into a single, LLM-friendly prompt. It walks the directory tree, outputting each file preceded by its relative path and a separator, so a model can understand which content came from where. The tool is aimed at workflows where you want to ask an LLM questions about a whole codebase, documentation set, or notes folder without manually copying files together. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    mlforecast

    mlforecast

    Scalable machine learning for time series forecasting

    mlforecast is a time-series forecasting framework built around machine-learning models, designed to make forecasting both efficient and scalable. It lets you apply any regressor that follows the typical scikit-learn API, for example, gradient-boosted trees or linear models, to time-series data by automating much of the messy feature engineering and data preparation. Instead of writing custom code to build lagged features, rolling statistics, and date-based predictors, mlforecast generates...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Qwen-Audio

    Qwen-Audio

    Chat & pretrained large audio language model proposed by Alibaba Cloud

    Qwen-Audio is a large audio-language model developed by Alibaba Cloud, built to accept various types of audio input (speech, natural sounds, music, singing) along with text input, and output text. There is also an instruction-tuned version called Qwen-Audio-Chat which supports conversational interaction (multi-round), audio + text input, creative tasks and reasoning over audio. It uses multi-task training over many different audio tasks (30+), and achieves strong multi-benchmarks performance...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    AIMET

    AIMET

    AIMET is a library that provides advanced quantization and compression

    Qualcomm Innovation Center (QuIC) is at the forefront of enabling low-power inference at the edge through its pioneering model-efficiency research. QuIC has a mission to help migrate the ecosystem toward fixed-point inference. With this goal, QuIC presents the AI Model Efficiency Toolkit (AIMET) - a library that provides advanced quantization and compression techniques for trained neural network models. AIMET enables neural networks to run more efficiently on fixed-point AI hardware...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    GLM-4.6V

    GLM-4.6V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.6V represents the latest generation of the GLM-V family and marks a major step forward in multimodal AI by combining advanced vision-language understanding with native “tool-call” capabilities, long-context reasoning, and strong generalization across domains. Unlike many vision-language models that treat images and text separately or require intermediate conversions, GLM-4.6V allows inputs such as images, screenshots or document pages directly as part of its reasoning pipeline — and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PaSa

    PaSa

    An advanced paper search agent powered by large language models

    PaSa is an open-source “paper search agent” built around large language models (LLMs), designed to automate the process of academic literature retrieval with human-like decision making. Instead of simply translating a query into keywords and returning a flat list of matching papers, PaSa uses a dual-agent architecture (Crawler + Selector) that can iteratively search, read, analyze, and filter academic publications — simulating how a researcher might dig through citation networks, expand...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Step-Audio-EditX

    Step-Audio-EditX

    LLM-based Reinforcement Learning audio edit model

    Step-Audio-EditX is an open-source, 3 billion-parameter audio model from StepFun AI designed to make expressive and precise editing of speech and audio as easy as text editing. Rather than treating audio editing as low-level waveform manipulation, this model converts speech into a sequence of discrete “audio tokens” (via a dual-codebook tokenizer) — combining a linguistic token stream and a semantic (prosody/emotion/style) token stream — thereby abstracting audio editing into high-level...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MiniMax-M1

    MiniMax-M1

    Open-weight, large-scale hybrid-attention reasoning model

    MiniMax-M1 is presented as the world’s first open-weight, large-scale hybrid-attention reasoning model, designed to push the frontier of long-context, tool-using, and deeply “thinking” language models. It is built on the MiniMax-Text-01 foundation and keeps the same massive parameter budget, but reworks the attention and training setup for better reasoning and test-time compute scaling. Architecturally, it combines Mixture-of-Experts layers with lightning attention, enabling the model to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    OpenAI-Compatible Edge-TTS API

    OpenAI-Compatible Edge-TTS API

    Free, high-quality text-to-speech API endpoint to replace OpenAI

    OpenAI-Compatible Edge-TTS API is a local, OpenAI-compatible text-to-speech API that uses edge-tts—Microsoft Edge’s online TTS service—as the backend. The project emulates the /v1/audio/speech endpoint used by OpenAI, so any client that can talk to the OpenAI TTS API can be redirected to this service with minimal changes. It exposes parameters for input text, voice selection, audio format, and playback speed, mirroring the OpenAI interface while mapping popular OpenAI voice names to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Agent Payments Protocol (AP2)

    Agent Payments Protocol (AP2)

    Building a Secure and Interoperable Future for AI-Driven Payments

    AP2 is a project released by Google’s “Agentic Commerce” initiative, focusing on a protocol and reference implementation for agent-driven or AI-mediated payments. In effect, AP2 aims to define a secure, interoperable protocol that allows software agents to act on behalf of users—making payments or shopping decisions autonomously—while preserving necessary security, auditability, and trust. The repository contains sample scenarios (in Python, Android, etc.) that illustrate how agents,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    MedicalGPT

    MedicalGPT

    MedicalGPT: Training Your Own Medical GPT Model with ChatGPT Training

    MedicalGPT training medical GPT model with ChatGPT training pipeline, implementation of Pretraining, Supervised Finetuning, Reward Modeling and Reinforcement Learning. MedicalGPT trains large medical models, including secondary pre-training, supervised fine-tuning, reward modeling, and reinforcement learning training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Make-A-Video - Pytorch (wip)

    Make-A-Video - Pytorch (wip)

    Implementation of Make-A-Video, new SOTA text to video generator

    Implementation of Make-A-Video, new SOTA text to video generator from Meta AI, in Pytorch. They combine pseudo-3d convolutions (axial convolutions) and temporal attention and show much better temporal fusion. The pseudo-3d convolutions isn't a new concept. It has been explored before in other contexts, say for protein contact prediction as "dimensional hybrid residual networks". The gist of the paper comes down to, take a SOTA text-to-image model (here they use DALL-E2, but the same learning...
    Downloads: 0 This Week
    Last Update:
    See Project