Showing 1873 open source projects for "linux-gnome"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 1
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    Apache TVM is an open source machine learning compiler framework for CPUs, GPUs, and machine learning accelerators. It aims to enable machine learning engineers to optimize and run computations efficiently on any hardware backend. The vision of the Apache TVM Project is to host a diverse community of experts and practitioners in machine learning, compilers, and systems architecture to build an accessible, extensible, and automated open-source framework that optimizes current and emerging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    PyTorch Geometric

    PyTorch Geometric

    Geometric deep learning extension library for PyTorch

    It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds. We have outsourced a lot of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Learn Claude Code

    Learn Claude Code

    Bash is all you need, write a claude code with only 16 line code

    Learn Claude Code is an educational repository that teaches how modern AI coding agents work by walking learners through a sequence of progressively more complex agent implementations, starting with a minimal Bash-based agent and culminating in agents with explicit planning, subagents, and skills. It emphasizes a hands-on learning path where each version (from v0 to v4) adds conceptual building blocks like the core agent loop, todo planning, task decomposition, and domain knowledge skills,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 5
    rLLM

    rLLM

    Democratizing Reinforcement Learning for LLMs

    rLLM is an open-source framework for building and training post-training language agents via reinforcement learning — that is, using reinforcement signals to fine-tune or adapt language models (LLMs) into customizable agents for real-world tasks. With rLLM, developers can define custom “agents” and “environments,” and then train those agents via reinforcement learning workflows, possibly surpassing what vanilla fine-tuning or supervised learning might provide. The project is designed to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    OpenAGI

    OpenAGI

    When LLM Meets Domain Experts

    OpenAGI is a package for AI agent creation designed to connect large language models with domain-specific tools and workflows in the AIOS (AI Operating System) ecosystem. It provides a structured Python framework, pyopenagi, for defining agents as modular units that encapsulate execution logic, configuration, and dependency metadata. Agents are organized in a well-defined folder structure that includes code (agent.py), configuration (config.json), and extra requirements...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    USO

    USO

    Open-sourced unified customization model

    USO is ByteDance’s “Unified Style and Subject-Driven Generation” framework, open-sourced to allow customization in generative modeling by disentangling style and subject representation and using reward learning to guide generation. The system is designed such that users can control both “what” is generated (the subject: e.g. a person, object, scene) and “how” it is generated (the style: artistic style, color palette, aesthetic) separately, giving much more flexibility than conventional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Matcha-TTS

    Matcha-TTS

    A fast TTS architecture with conditional flow matching

    Matcha-TTS is a non-autoregressive neural text-to-speech architecture that uses conditional flow matching to generate speech quickly while maintaining natural quality. It models speech as an ODE-based generative process, and conditional flow matching lets it reach high-quality audio in only a few synthesis steps, which greatly reduces latency compared to score-matching diffusion approaches. The model is fully probabilistic, so it can generate diverse realizations of the same text while still...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    WavTokenizer

    WavTokenizer

    SOTA discrete acoustic codec models with 40/75 tokens per second

    WavTokenizer is a state-of-the-art discrete acoustic codec designed specifically for audio language modeling, capable of compressing 24 kHz audio into just 40 or 75 tokens per second while preserving high perceptual quality. It is built to represent speech, music, and general audio with extremely low bitrate, making it ideal as a front-end for large audio language models like GPT-4o and similar architectures. The model uses a single-quantizer design together with temporal compression to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    ChatTTS_colab

    ChatTTS_colab

    One-click deployment (including offline integration package)

    ChatTTS_colab is a wrapper project around the ChatTTS model that focuses on “one-click” deployment, especially in Google Colab. It provides an integrated offline bundle and scripts for Windows and macOS so users can run ChatTTS locally without wrestling with complex environment setup. The repository includes Colab notebooks that launch a Gradio-based web UI and expose streaming TTS, making it possible to listen to generated audio as it is produced. A distinctive feature is the “voice gacha”...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    ESPnet

    ESPnet

    End-to-end speech processing toolkit

    ESPnet is a comprehensive end-to-end speech processing toolkit covering a wide spectrum of tasks, including automatic speech recognition (ASR), text-to-speech (TTS), speech translation (ST), speech enhancement, speaker diarization, and spoken language understanding. It uses PyTorch as its deep learning engine and adopts a Kaldi-style data processing pipeline for features, data formats, and experimental recipes. This combination allows researchers to leverage modern neural architectures while...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Generative AI

    Generative AI

    Sample code and notebooks for Generative AI on Google Cloud

    Generative AI is a comprehensive collection of code samples, notebooks, and demo applications designed to help developers build generative-AI workflows on the Vertex AI platform. It spans multiple modalities—text, image, audio, search (RAG/grounding) and more—showing how to integrate foundation models like the Gemini family into cloud projects. The README emphasises getting started with prompts, datasets, environments and sample apps, making it ideal for both experimentation and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Stable Diffusion WebUI Forge

    Stable Diffusion WebUI Forge

    Stable Diffusion WebUI Forge is a platform on top of Stable Diffusion

    Stable Diffusion WebUI Forge is a performance- and feature-oriented fork of the popular AUTOMATIC1111 interface that experiments with new backends, memory optimizations, and UX improvements. It targets heavy users and researchers who push large models, control nets, and high-resolution pipelines where default settings can become bottlenecks. The fork typically introduces toggles for scheduler behavior, attention implementations, caching, and precision modes to reach better speed or quality...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    verl

    verl

    Volcano Engine Reinforcement Learning for LLMs

    VERL is a reinforcement-learning–oriented toolkit designed to train and align modern AI systems, from language models to decision-making agents. It brings together supervised fine-tuning, preference modeling, and online RL into one coherent training stack so teams can move from raw data to aligned policies with minimal glue code. The library focuses on scalability and efficiency, offering distributed training loops, mixed precision, and replay/buffering utilities that keep accelerators busy....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    OSS-Fuzz Gen

    OSS-Fuzz Gen

    LLM powered fuzzing via OSS-Fuzz

    OSS-Fuzz-Gen is a companion project that helps automatically create or improve fuzz targets for open-source codebases, aiming to increase coverage in OSS-Fuzz with minimal maintainer effort. It analyses a library’s APIs, examples, and tests to propose harnesses that exercise parsers, decoders, or protocol handlers—precisely the code where fuzzing pays off. The system integrates with modern LLM-assisted workflows to draft harness code and then iterates based on build errors or low coverage...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Tracking Any Point (TAP)

    Tracking Any Point (TAP)

    DeepMind model for tracking arbitrary points across videos & robotics

    TAPNet is the official Google DeepMind repository for Tracking Any Point (TAP), bundling datasets, models, benchmarks, and demos for precise point tracking in videos. The project includes the TAP-Vid and TAPVid-3D benchmarks, which evaluate long-range tracking of arbitrary points in 2D and 3D across diverse real and synthetic videos. Its flagship models—TAPIR, BootsTAPIR, and the latest TAPNext—use matching plus temporal refinement or next-token style propagation to achieve state-of-the-art...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Gemma

    Gemma

    Gemma open-weight LLM library, from Google DeepMind

    Gemma, developed by Google DeepMind, is a family of open-weights large language models (LLMs) built upon the research and technology behind Gemini. This repository provides the official implementation of the Gemma PyPI package, a JAX-based library that enables users to load, interact with, and fine-tune Gemma models. The framework supports both text and multi-modal input, allowing natural language conversations that incorporate visual content such as images. It includes APIs for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Google DeepMind GraphCast and GenCast

    Google DeepMind GraphCast and GenCast

    Global weather forecasting model using graph neural networks and JAX

    GraphCast, developed by Google DeepMind, is a research-grade weather forecasting framework that employs graph neural networks (GNNs) to generate medium-range global weather predictions. The repository provides complete example code for running and training both GraphCast and GenCast, two models introduced in DeepMind’s research papers. GraphCast is designed to perform high-resolution atmospheric simulations using the ERA5 dataset from ECMWF, while GenCast extends the approach with...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. CO3Dv2 enables research...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Perception Models

    Perception Models

    State-of-the-art Image & Video CLIP, Multimodal Large Language Models

    Perception Models is a state-of-the-art framework developed by Facebook Research for advanced image and video perception tasks. It introduces two primary components: the Perception Encoder (PE) for visual feature extraction and the Perception Language Model (PLM) for multimodal decoding and reasoning. The PE module is a family of vision encoders designed to excel in image and video understanding, surpassing models like SigLIP2, InternVideo2, and DINOv2 across multiple benchmarks. Meanwhile,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Claude Code Security Review

    Claude Code Security Review

    An AI-powered security review GitHub Action using Claude

    The claude-code-security-review repository implements a GitHub Action that uses Claude (via the Anthropic API) to perform semantic security audits of code changes in pull requests. Rather than relying purely on pattern matching or static analysis, this action feeds diffs and surrounding context to Claude to reason about potential vulnerabilities (e.g. injection, misconfigurations, secrets exposure, etc). When a PR is opened, the action analyzes only the changed files (diff-aware scanning),...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    CogVLM2

    CogVLM2

    GPT4V-level open-source multi-modal model based on Llama3-8B

    CogVLM2 is the second generation of the CogVLM vision-language model series, developed by ZhipuAI and released in 2024. Built on Meta-Llama-3-8B-Instruct, CogVLM2 significantly improves over its predecessor by providing stronger performance across multimodal benchmarks such as TextVQA, DocVQA, and ChartQA, while introducing extended context length support of up to 8K tokens and high-resolution image input up to 1344×1344. The series includes models for both image understanding and video...
    Downloads: 0 This Week
    Last Update:
    See Project