Showing 1872 open source projects for "artificial intelligence python"

View related business solutions
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • WinMan ERP Software Icon
    WinMan ERP Software

    For companies of all sizes and enterprises in need of a solution to improve their operations

    WinMan ERP is an all-encompassing solution designed to manage the operational, quality, commercial, and financial processes of manufacturers and distributors. It is particularly well-suited for companies embracing Lean strategies.
    Learn More
  • 1
    Pearl

    Pearl

    A Production-ready Reinforcement Learning AI Agent Library

    Pearl is a production-ready reinforcement learning and contextual bandit agent library built for real-world sequential decision making. It is organized around modular components—policy learners, replay buffers, exploration strategies, safety modules, and history summarizers—that snap together to form reliable agents with clear boundaries and strong defaults. The library implements classic and modern algorithms across two regimes: contextual bandits (e.g., LinUCB, LinTS, SquareCB, neural...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    JEPA

    JEPA

    PyTorch code and models for V-JEPA self-supervised learning from video

    JEPA (Joint-Embedding Predictive Architecture) captures the idea of predicting missing high-level representations rather than reconstructing pixels, aiming for robust, scalable self-supervised learning. A context encoder ingests visible regions and predicts target embeddings for masked regions produced by a separate target encoder, avoiding low-level reconstruction losses that can overfit to texture. This makes learning focus on semantics and structure, yielding features that transfer well...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Flow Matching

    Flow Matching

    A PyTorch library for implementing flow matching algorithms

    flow_matching is a PyTorch library implementing flow matching algorithms in both continuous and discrete settings, enabling generative modeling via matching vector fields rather than diffusion. The underlying idea is to parameterize a flow (a time-dependent vector field) that transports samples from a simple base distribution to a target distribution, and train via matching of flows without requiring score estimation or noisy corruption—this can lead to more efficient or stable generative...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DLRM

    DLRM

    An implementation of a deep learning recommendation model (DLRM)

    DLRM (Deep Learning Recommendation Model) is Meta’s open-source reference implementation for large-scale recommendation systems built to handle extremely high-dimensional sparse features and embedding tables. The architecture combines dense (MLP) and sparse (embedding) branches, then interacts features via dot product or feature interactions before passing through further dense layers to predict click-through, ranking scores, or conversion probabilities. The implementation is optimized for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 5
    DeiT (Data-efficient Image Transformers)
    DeiT (Data-efficient Image Transformers) shows that Vision Transformers can be trained competitively on ImageNet-1k without external data by using strong training recipes and knowledge distillation. Its key idea is a specialized distillation strategy—including a learnable “distillation token”—that lets a transformer learn effectively from a CNN or transformer teacher on modest-scale datasets. The project provides compact ViT variants (Tiny/Small/Base) that achieve excellent...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    ImageBind

    ImageBind

    ImageBind One Embedding Space to Bind Them All

    ImageBind is a multimodal embedding framework that learns a shared representation space across six modalities—images, text, audio, depth, thermal, and IMU (inertial motion) data—without requiring explicit pairwise training for every modality combination. Instead of aligning each pair independently, ImageBind uses image data as the central binding modality, aligning all other modalities to it so they can interoperate zero-shot. This creates a unified embedding space where representations from...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PyTorch3D

    PyTorch3D

    PyTorch3D is FAIR's library of reusable components for deep learning

    PyTorch3D is a comprehensive library for 3D deep learning that brings differentiable rendering, geometric operations, and 3D data structures into the PyTorch ecosystem. It’s designed to make it easy to build and train neural networks that work directly with 3D data such as meshes, point clouds, and implicit surfaces. The library provides fast GPU-accelerated implementations of rendering pipelines, transformations, rasterization, and lighting—making it possible to compute gradients through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    VGGT

    VGGT

    [CVPR 2025 Best Paper Award] VGGT

    VGGT is a transformer-based framework aimed at unifying classic visual geometry tasks—such as depth estimation, camera pose recovery, point tracking, and correspondence—under a single model. Rather than training separate networks per task, it shares an encoder and leverages geometric heads/decoders to infer structure and motion from images or short clips. The design emphasizes consistent geometric reasoning: outputs from one head (e.g., correspondences or tracks) reinforce others (e.g., pose...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Easy-to-Use Website Accessibility Widget Icon
    Easy-to-Use Website Accessibility Widget

    An accessibility solution for quick website accessibility improvement.

    All in One Accessibility is an AI based accessibility tool that helps organizations to enhance the accessibility and usability of websites quickly.
    Learn More
  • 10
    DINOv2

    DINOv2

    PyTorch code and models for the DINOv2 self-supervised learning

    DINOv2 is a self-supervised vision learning framework that produces strong, general-purpose image representations without using human labels. It builds on the DINO idea of student–teacher distillation and adapts it to modern Vision Transformer backbones with a carefully tuned recipe for data augmentation, optimization, and multi-crop training. The core promise is that a single pretrained backbone can transfer well to many downstream tasks—from linear probing on classification to retrieval,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Mistral Finetune

    Mistral Finetune

    Memory-efficient and performant finetuning of Mistral's models

    mistral-finetune is an official lightweight codebase designed for memory-efficient and performant finetuning of Mistral’s open models (e.g. 7B, instruct variants). It builds on techniques like LoRA (Low-Rank Adaptation) to allow customizing models without full parameter updates, which reduces GPU memory footprint and training cost. The repo includes utilities for data preprocessing (e.g. reformat_data.py), validation scripts, and example YAML configs for training variants like 7B base or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    DeepSeek MoE

    DeepSeek MoE

    Towards Ultimate Expert Specialization in Mixture-of-Experts Language

    DeepSeek-MoE (“DeepSeek MoE”) is the DeepSeek open implementation of a Mixture-of-Experts (MoE) model architecture meant to increase parameter efficiency by activating only a subset of “expert” submodules per input. The repository introduces fine-grained expert segmentation and shared expert isolation to improve specialization while controlling compute cost. For example, their MoE variant with 16.4B parameters claims comparable or better performance to standard dense models like DeepSeek 7B...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    DreamCraft3D is DeepSeek’s generative 3D modeling framework / model family that likely extends their earlier 3D efforts (e.g. Shap-E or Point-E style models) with more capability, control, or expression. The name suggests a “dream crafting” metaphor—users probably supply textual or image prompts and generate 3D assets (point clouds, meshes, scenes). The repository includes model code, inference scripts, sample prompts, and possibly dataset preparation pipelines. It may integrate rendering or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    MiniCPM-o

    MiniCPM-o

    A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming

    MiniCPM-o 2.6 is a cutting-edge multimodal large language model (MLLM) designed for high-performance tasks across vision, speech, and video. Capable of running on end-side devices such as smartphones and tablets, it provides powerful features like real-time speech conversation, video understanding, and multimodal live streaming. With 8 billion parameters, MiniCPM-o 2.6 surpasses its predecessors in versatility and efficiency, making it one of the most robust models available. It supports...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    BitNet

    BitNet

    Inference framework for 1-bit LLMs

    BitNet (bitnet.cpp) is a high-performance inference framework designed to optimize the execution of 1-bit large language models, making them more efficient for edge devices and local deployment. The framework offers significant speedups and energy reductions, achieving up to 6.17x faster performance on x86 CPUs and 70% energy savings, allowing the running of models such as the BitNet b1.58 100B with impressive efficiency. With support for lossless inference and enhanced processing power,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Transformers4Rec

    Transformers4Rec

    Transformers4Rec is a flexible and efficient library

    Transformers4Rec is an advanced recommendation system library that leverages Transformer models for sequential and session-based recommendations. The library works as a bridge between natural language processing (NLP) and recommender systems (RecSys) by integrating with one of the most popular NLP frameworks, Hugging Face Transformers (HF). Transformers4Rec makes state-of-the-art transformer architectures available for RecSys researchers and industry practitioners. Traditional recommendation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AICodeBot

    AICodeBot

    AI-powered tool for developers, simplifying coding tasks

    AICodeBot is a terminal-based coding assistant designed to make your coding life easier. Think of it as your AI version of a pair programmer. Perform code reviews, create helpful commit messages, debug problems, and help you think through building new features. A team member that accelerates the pace of development and helps you write better code. We've planned to build out multiple different interfaces for interacting with AICodeBot. To start, it's a command-line tool that you can install...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Nixtla Neural Forecast

    Nixtla Neural Forecast

    Scalable and user friendly neural forecasting algorithms.

    NeuralForecast offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: MLP, LSTM, GRU, RNN, TCN, TimesNet, BiTCN, DeepAR, NBEATS, NBEATSx, NHITS, TiDE, DeepNPTS, TSMixer, TSMixerx, MLPMultivariate, DLinear, NLinear, TFT, Informer, AutoFormer, FedFormer, PatchTST, iTransformer, StemGNN, and TimeLLM. There is a shared belief in Neural forecasting methods'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    KServe

    KServe

    Standardized Serverless ML Inference Platform on Kubernetes

    KServe provides a Kubernetes Custom Resource Definition for serving machine learning (ML) models on arbitrary frameworks. It aims to solve production model serving use cases by providing performant, high abstraction interfaces for common ML frameworks like Tensorflow, XGBoost, ScikitLearn, PyTorch, and ONNX. It encapsulates the complexity of autoscaling, networking, health checking, and server configuration to bring cutting edge serving features like GPU Autoscaling, Scale to Zero, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    Get scores for factual accuracy, context retrieval quality, guideline adherence, tonality, and many more. You can’t improve what you can’t measure. UpTrain continuously monitors your application's performance on multiple evaluation criterions and alerts you in case of any regressions with automatic root cause analysis. UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    OpenCompass

    OpenCompass

    OpenCompass is an LLM evaluation platform

    Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models. OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Pre-support for 20+ HuggingFace and API models, a model evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Aviary

    Aviary

    Ray Aviary - evaluate multiple LLMs easily

    Aviary is an LLM serving solution that makes it easy to deploy and manage a variety of open source LLMs. Providing an extensive suite of pre-configured open source LLMs, with defaults that work out of the box. Supporting Transformer models hosted on Hugging Face Hub or present on local disk. Aviary has native support for autoscaling and multi-node deployments thanks to Ray and Ray Serve. Aviary can scale to zero and create new model replicas (each composed of multiple GPU workers) in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Cleanlab

    Cleanlab

    The standard data-centric AI package for data quality and ML

    cleanlab helps you clean data and labels by automatically detecting issues in a ML dataset. To facilitate machine learning with messy, real-world data, this data-centric AI package uses your existing models to estimate dataset problems that can be fixed to train even better models. cleanlab cleans your data's labels via state-of-the-art confident learning algorithms, published in this paper and blog. See some of the datasets cleaned with cleanlab at labelerrors.com. This package helps you...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Argilla

    Argilla

    The open-source data curation platform for LLMs

    Argilla is a production-ready framework for building and improving datasets for NLP projects. Deploy your own Argilla Server on Spaces with a few clicks. Use embeddings to find the most similar records with the UI. This feature uses vector search combined with traditional search (keyword and filter based). Argilla is free, open-source, and 100% compatible with major NLP libraries (Hugging Face transformers, spaCy, Stanford Stanza, Flair, etc.). In fact, you can use and combine your preferred...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    OpenFold

    OpenFold

    Trainable, memory-efficient, and GPU-friendly PyTorch reproduction

    OpenFold carefully reproduces (almost) all of the features of the original open source inference code (v2.0.1). The sole exception is model ensembling, which fared poorly in DeepMind's own ablation testing and is being phased out in future DeepMind experiments. It is omitted here for the sake of reducing clutter. In cases where the Nature paper differs from the source, we always defer to the latter. OpenFold is trainable in full precision, half precision, or bfloat16 with or without...
    Downloads: 0 This Week
    Last Update:
    See Project