Showing 1863 open source projects for "linux-firmware"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    UpTrain

    UpTrain

    Your open-source LLM evaluation toolkit

    Get scores for factual accuracy, context retrieval quality, guideline adherence, tonality, and many more. You can’t improve what you can’t measure. UpTrain continuously monitors your application's performance on multiple evaluation criterions and alerts you in case of any regressions with automatic root cause analysis. UpTrain enables fast and robust experimentation across multiple prompts, model providers, and custom configurations, by calculating quantitative scores for direct comparison...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    OpenCompass

    OpenCompass

    OpenCompass is an LLM evaluation platform

    Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models. OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Pre-support for 20+ HuggingFace and API models, a model evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Bard API

    Bard API

    The unofficial python package that returns response of Google Bard

    The Python package returns a response of Google Bard through the value of the cookie. This package is designed for application to the Python package ExceptNotifier and Co-Coder. Please note that the bardapi is not a free service, but rather a tool provided to assist developers with testing certain functionalities due to the delayed development and release of Google Bard's API. It has been designed with a lightweight structure that can easily adapt to the emergence of an official API....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    refinery

    refinery

    Open-source choice to scale, assess and maintain natural language data

    The data scientist's open-source choice to scale, assess and maintain natural language data. Treat training data like a software artifact. You are one of the people we've built refinery for. refinery helps you to build better NLP models in a data-centric approach. Semi-automate your labeling, find low-quality subsets in your training data, and monitor your data in one place. refinery doesn't get rid of manual labeling, but it makes sure that your valuable time is spent well. Also, the makers...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Inventors: Validate Your Idea, Protect It and Gain Market Advantages Icon
    Inventors: Validate Your Idea, Protect It and Gain Market Advantages

    SenseIP is ideal for individual inventors, startups, and businesses

    senseIP is an AI innovation platform for inventors, automating any aspect of IP from the moment you have an idea. You can have it researched for uniqueness and protected; quickly and effortlessly, without expensive attorneys. Built for business success while securing your competitive edge.
    Learn More
  • 5
    Argilla

    Argilla

    The open-source data curation platform for LLMs

    Argilla is a production-ready framework for building and improving datasets for NLP projects. Deploy your own Argilla Server on Spaces with a few clicks. Use embeddings to find the most similar records with the UI. This feature uses vector search combined with traditional search (keyword and filter based). Argilla is free, open-source, and 100% compatible with major NLP libraries (Hugging Face transformers, spaCy, Stanford Stanza, Flair, etc.). In fact, you can use and combine your preferred...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Marvin

    Marvin

    A batteries-included library for building AI-powered software

    Meet Marvin: a batteries-included library for building AI-powered software. Marvin's job is to integrate AI directly into your codebase by making it look and feel like any other function. Marvin introduces a new concept called AI Functions. These functions differ from conventional ones in that they don’t rely on source code, but instead generate their outputs on-demand through AI. With AI functions, you don't have to write complex code for tasks like extracting entities from web pages,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Recurrent Interface Network (RIN)

    Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN)

    Implementation of Recurrent Interface Network (RIN), for highly efficient generation of images and video without cascading networks, in Pytorch. The author unawaredly reinvented the induced set-attention block from the set transformers paper. They also combine this with the self-conditioning technique from the Bit Diffusion paper, specifically for the latents. The last ingredient seems to be a new noise function based around the sigmoid, which the author claims is better than cosine...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    YData Synthetic

    YData Synthetic

    Synthetic data generators for tabular and time-series data

    A package to generate synthetic tabular and time-series data leveraging state-of-the-art generative models. Synthetic data is artificially generated data that is not collected from real-world events. It replicates the statistical components of real data without containing any identifiable information, ensuring individuals' privacy. This repository contains material related to Generative Adversarial Networks for synthetic data generation, in particular regular tabular data and time-series. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software. Icon
    Axe Credit Portal - ACP- is axefinance’s future-proof AI-driven solution to digitalize the loan process from KYC to servicing, available as a locally hosted or cloud-based software.

    Banks, lending institutions

    Founded in 2004, axefinance is a global market-leading software provider focused on credit risk automation for lenders looking to provide an efficient, competitive, and seamless omnichannel financing journey for all client segments (FI, Retail, Commercial, and Corporate.)
    Learn More
  • 10
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways. This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    Hivemind is a PyTorch library for decentralized deep learning across the Internet. Its intended usage is training one large model on hundreds of computers from different universities, companies, and volunteers. Distributed training without a master node: Distributed Hash Table allows connecting computers in a decentralized network. Fault-tolerant backpropagation: forward and backward passes succeed even if some nodes are unresponsive or take too long to respond. Decentralized parameter...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Opacus

    Opacus

    Training PyTorch models with differential privacy

    Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the client, has little impact on training performance, and allows the client to online track the privacy budget expended at any given moment. Vectorized per-sample gradient computation that is 10x faster than micro batching. Supports most types of PyTorch models and can be used with minimal modification to the original neural network. Open source,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    TorchIO

    TorchIO

    Medical imaging toolkit for deep learning

    TorchIO is an open-source Python library for efficient loading, preprocessing, augmentation and patch-based sampling of 3D medical images in deep learning, following the design of PyTorch. It includes multiple intensity and spatial transforms for data augmentation and preprocessing. These transforms include typical computer vision operations such as random affine transformations and also domain-specific ones such as simulation of intensity artifacts due to MRI magnetic field inhomogeneity...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Deepchecks

    Deepchecks

    Test Suites for validating ML models & data

    Deepchecks is the leading tool for testing and for validating your machine learning models and data, and it enables doing so with minimal effort. Deepchecks accompany you through various validation and testing needs such as verifying your data’s integrity, inspecting its distributions, validating data splits, evaluating your model and comparing between different models. While you’re in the research phase, and want to validate your data, find potential methodological problems, and/or validate...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AIF360

    AIF360

    A comprehensive set of fairness metrics for datasets

    This extensible open source toolkit can help you examine, report, and mitigate discrimination and bias in machine learning models throughout the AI application lifecycle. We invite you to use and improve it. The AI Fairness 360 toolkit is an extensible open-source library containing techniques developed by the research community to help detect and mitigate bias in machine learning models throughout the AI application lifecycle. AI Fairness 360 package is available in both Python and R. The...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    High-Level Training Utilities Pytorch

    High-Level Training Utilities Pytorch

    High-level training, data augmentation, and utilities for Pytorch

    Contains significant improvements, bug fixes, and additional support. Get it from the releases, or pull the master branch. This package provides a few things. A high-level module for Keras-like training with callbacks, constraints, and regularizers. Comprehensive data augmentation, transforms, sampling, and loading. Utility tensor and variable functions so you don't need numpy as often. Have any feature requests? Submit an issue! I'll make it happen. Specifically, any data augmentation, data...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Haiku

    Haiku

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX’s pure function transformations. Haiku is designed to make the common things we do such as managing model parameters and other model state simpler and similar in spirit to the Sonnet library that has been widely used...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    A simple yet powerful open-source framework that scales your MLOps stack with your needs. Set up ZenML in a matter of minutes, and start with all the tools you already use. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    torchtext

    torchtext

    Data loaders and abstractions for text and NLP

    We recommend Anaconda as a Python package management system. Please refer to pytorch.org for the details of PyTorch installation. LTS versions are distributed through a different channel than the other versioned releases. Alternatively, you might want to use the Moses tokenizer port in SacreMoses (split from NLTK). You have to install SacreMoses. To build torchtext from source, you need git, CMake and C++11 compiler such as g++. When building from source, make sure that you have the same C++...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorFlow Probability

    TensorFlow Probability

    Probabilistic reasoning and statistical analysis in TensorFlow

    TensorFlow Probability is a library for probabilistic reasoning and statistical analysis. TensorFlow Probability (TFP) is a Python library built on TensorFlow that makes it easy to combine probabilistic models and deep learning on modern hardware (TPU, GPU). It's for data scientists, statisticians, ML researchers, and practitioners who want to encode domain knowledge to understand data and make predictions. Since TFP inherits the benefits of TensorFlow, you can build, fit, and deploy a model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Colossal-AI

    Colossal-AI

    Making large AI models cheaper, faster and more accessible

    The Transformer architecture has improved the performance of deep learning models in domains such as Computer Vision and Natural Language Processing. Together with better performance come larger model sizes. This imposes challenges to the memory wall of the current accelerator hardware such as GPU. It is never ideal to train large models such as Vision Transformer, BERT, and GPT on a single GPU or a single machine. There is an urgent demand to train models in a distributed environment....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    IVY

    IVY

    The Unified Machine Learning Framework

    Take any code that you'd like to include. For example, an existing TensorFlow model, and some useful functions from both PyTorch and NumPy libraries. Choose any framework for writing your higher-level pipeline, including data loading, distributed training, analytics, logging, visualization etc. Choose any backend framework which should be used under the hood, for running this entire pipeline. Choose the most appropriate device or combination of devices for your needs. DeepMind releases an...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you...
    Downloads: 0 This Week
    Last Update:
    See Project