Showing 1896 open source projects for "java open source"

View related business solutions
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • Field Sales+ for MS Dynamics 365 and Salesforce Icon
    Field Sales+ for MS Dynamics 365 and Salesforce

    Maximize your sales performance on the go.

    Bring Dynamics 365 and Salesforce wherever you go with Resco’s solution. With powerful offline features and reliable data syncing, your team can access CRM data on mobile devices anytime, anywhere. This saves time, cuts errors, and speeds up customer visits.
    Learn More
  • 1
    Xorbits Inference

    Xorbits Inference

    Replace OpenAI GPT with another LLM in your app

    Replace OpenAI GPT with another LLM in your app by changing a single line of code. Xinference gives you the freedom to use any LLM you need. With Xinference, you're empowered to run inference with any open-source language models, speech recognition models, and multimodal models, whether in the cloud, on-premises, or even on your laptop. Xorbits Inference(Xinference) is a powerful and versatile library designed to serve language, speech recognition, and multimodal models. With Xorbits Inference, you can effortlessly deploy and serve your or state-of-the-art built-in models using just a single command. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning workloads from research and simulation to real-world production deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Python Client For NLP Cloud

    Python Client For NLP Cloud

    NLP Cloud serves high performance pre-trained or custom models for NER

    NLP Cloud serves high performance pre-trained or custom models for NER, sentiment-analysis, classification, summarization, dialogue summarization, paraphrasing, intent classification, product description and ad generation, chatbot, grammar and spelling correction, keywords and keyphrases extraction, text generation, image generation, blog post generation, source code generation, question answering, automatic speech recognition, machine translation, language detection, semantic search,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases.
    Downloads: 0 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 5
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    SAHI

    SAHI

    A lightweight vision library for performing large object detection

    ...Such objects are represented by small number of pixels in the image and lack sufficient details, making them difficult to detect using conventional detectors. In this work, an open-source framework called Slicing Aided Hyper Inference (SAHI) is proposed that provides a generic slicing aided inference and fine-tuning pipeline for small object detection.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    SpeechBrain is an open-source and all-in-one conversational AI toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Adapters

    Adapters

    A Unified Library for Parameter-Efficient Learning

    Adapters is an add-on library to HuggingFace's Transformers, integrating 10+ adapter methods into 20+ state-of-the-art Transformer models with minimal coding overhead for training and inference. Adapters provide a unified interface for efficient fine-tuning and modular transfer learning, supporting a myriad of features like full-precision or quantized training (e.g. Q-LoRA, Q-Bottleneck Adapters, or Q-PrefixTuning), adapter merging via task arithmetics or the composition of multiple adapters...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Comet Backup - Fast, Secure Backup Software for MSPs Icon
    Comet Backup - Fast, Secure Backup Software for MSPs

    Fast, Secure Backup Software for Businesses and IT Providers

    Comet is a flexible backup platform, giving you total control over your backup environment and storage destinations.
    Learn More
  • 10
    Atomic Agents

    Atomic Agents

    Building AI agents, atomically

    The Atomic Agents framework is designed around the concept of atomicity to be an extremely lightweight and modular framework for building Agentic AI pipelines and applications without sacrificing developer experience and maintainability. The framework provides a set of tools and agents that can be combined to create powerful applications. It is built on top of Instructor and leverages the power of Pydantic for data and schema validation and serialization. All logic and control flows are...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Agently

    Agently

    AI Agent Application Development Framework

    Build AI agent native application in very little code. Easy to interact with AI agents in code using structure data and chained-calls syntax. Enhance AI Agent using plugins instead of rebuilding a whole new agent. Agently is a development framework that helps developers build AI agent native applications really fast. You can use and build AI agents in your code in an extremely simple way.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Intel Extension for PyTorch

    Intel Extension for PyTorch

    A Python package for extending the official PyTorch

    Intel® Extension for PyTorch* extends PyTorch* with up-to-date features optimizations for an extra performance boost on Intel hardware. Optimizations take advantage of Intel® Advanced Vector Extensions 512 (Intel® AVX-512) Vector Neural Network Instructions (VNNI) and Intel® Advanced Matrix Extensions (Intel® AMX) on Intel CPUs as well as Intel Xe Matrix Extensions (XMX) AI engines on Intel discrete GPUs. Moreover, Intel® Extension for PyTorch* provides easy GPU acceleration for Intel...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    fastdup

    fastdup

    An unsupervised and free tool for image and video dataset analysis

    fastdup is a powerful free tool designed to rapidly extract valuable insights from your image & video datasets. Assisting you to increase your dataset images & labels quality and reduce your data operations costs at an unparalleled scale.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AWorld

    AWorld

    Build, evaluate and train General Multi-Agent Assistance with ease

    AWorld (Agent World) is an agent runtime/framework. It supports building, evaluating, and training self-improving intelligent agents and multi-agent systems (MAS). It is designed to provide infrastructure for agent orchestration, iterative learning, and environment interaction at scale. Scalable training across environments and distributed setups. Support for multi-agent collaboration/orchestration (MAS). The system is intended to help agents evolve via experience. It provides features to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Meta Agents Research Environments (ARE)

    Meta Agents Research Environments (ARE)

    Meta Agents Research Environments is a comprehensive platform

    Meta Agents Research Environments (ARE) is a simulation and benchmarking platform. It is designed to evaluate AI agents in dynamic, evolving, multi-step tasks. Unlike static benchmarks, ARE supports environments where agents must adapt to changes over time and reason over sequences of actions. It interacts with applications and faces uncertainty. The included Gaia2 benchmark offers 800 scenarios across multiple “universes”. It can test reasoning, memory, tool use, and adaptability....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Arcade AI

    Arcade AI

    Arcade Tool Development Kit (TDK), Worker, Evals, and CLI

    Arcade AI Platform is a developer-oriented toolkit for building, deploying, and managing tools tailored to AI agents, structured as modular Python packages for flexibility and extensibility. Core platform functionality and schemas. This repository contains the core Arcade libraries, organized as separate packages for maximum flexibility and modularity. Evaluation framework for testing tool performance. Test your MCP server's tools, resources, prompts, elicitation, and OAuth 2. MCPJam is...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AndroidEnv

    AndroidEnv

    RL research on Android devices

    android_env is a reinforcement learning (RL) environment developed by Google DeepMind that enables agents to interact with Android applications directly as a learning environment. It provides a standardized API for training agents to perform tasks on Android apps, supporting tasks ranging from games to productivity apps, making it suitable for research in real-world RL settings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    TorchDistill

    TorchDistill

    A coding-free framework built on PyTorch

    torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Audiogen Codec

    Audiogen Codec

    48khz stereo neural audio codec for general audio

    AGC (Audiogen Codec) is a convolutional autoencoder based on the DAC architecture, which holds SOTA. We found that training with EMA and adding a perceptual loss term with CLAP features improved performance. These codecs, being low compression, outperform Meta's EnCodec and DAC on general audio as validated from internal blind ELO games. We trained (relatively) very low compression codecs in the pursuit of solving a core issue regarding general music and audio generation, low acoustic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Haiku Sonnet for JAX

    Haiku Sonnet for JAX

    JAX-based neural network library

    Haiku is a library built on top of JAX designed to provide simple, composable abstractions for machine learning research. JAX is a numerical computing library that combines NumPy, automatic differentiation, and first-class GPU/TPU support. Haiku is a simple neural network library for JAX that enables users to use familiar object-oriented programming models while allowing full access to JAX's pure function transformations. Haiku provides two core tools: a module abstraction, hk.Module, and a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    pomegranate is a library for probabilistic modeling defined by its modular implementation and treatment of all models as the probability distributions they are. The modular implementation allows one to easily drop normal distributions into a mixture model to create a Gaussian mixture model just as easily as dropping a gamma and a Poisson distribution into a mixture model to create a heterogeneous mixture. But that's not all! Because each model is treated as a probability distribution,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Sacred

    Sacred

    Sacred is a tool to help you configure, andorganize IDSIA experiments

    Sacred is a tool to help you configure, organize, log and reproduce experiments. It is designed to do all the tedious overhead work that you need to do around your actual experiment. A very convenient way of the local variables in a function to define the parameters your experiment uses. You can access all parameters of your configuration from every function. They are automatically injected by name. You get a powerful command-line interface for each experiment that you can use to change...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Causal ML

    Causal ML

    Uplift modeling and causal inference with machine learning algorithms

    Causal ML is a Python package that provides a suite of uplift modeling and causal inference methods using machine learning algorithms based on recent research [1]. It provides a standard interface that allows users to estimate the Conditional Average Treatment Effect (CATE) or Individual Treatment Effect (ITE) from experimental or observational data. Essentially, it estimates the causal impact of intervention T on outcome Y for users with observed features X, without strong assumptions on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal...
    Downloads: 0 This Week
    Last Update:
    See Project