Showing 282 open source projects for "software development"

View related business solutions
  • Ship AI Apps Faster with Vertex AI Icon
    Ship AI Apps Faster with Vertex AI

    Go from idea to deployed AI app without managing infrastructure. Vertex AI offers one platform for the entire AI development lifecycle.

    Ship AI apps and features faster with Vertex AI—your end-to-end AI platform. Access Gemini 3 and 200+ foundation models, fine-tune for your needs, and deploy with enterprise-grade MLOps. Build chatbots, agents, or custom models. New customers get $300 in free credit.
    Try Vertex AI Free
  • Cut Data Warehouse Costs up to 54% with BigQuery Icon
    Cut Data Warehouse Costs up to 54% with BigQuery

    Migrate from Snowflake, Databricks, or Redshift with free migration tools. Exabyte scale without the Exabyte price.

    BigQuery delivers up to 54% lower TCO than cloud alternatives. Migrate from legacy or competing warehouses using free BigQuery Migration Service with automated SQL translation. Get serverless scale with no infrastructure to manage, compressed storage, and flexible pricing—pay per query or commit for deeper discounts. New customers get $300 in free credit.
    Try BigQuery Free
  • 1
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    SageMaker Hugging Face Inference Toolkit

    SageMaker Hugging Face Inference Toolkit

    Library for serving Transformers models on Amazon SageMaker

    SageMaker Hugging Face Inference Toolkit is an open-source library for serving Transformers models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain Transformers models and tasks. It utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. For the Dockerfiles used for building SageMaker Hugging Face Containers, see AWS Deep Learning Containers. The SageMaker Hugging...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Mentat

    Mentat

    Mentat - The AI Coding Assistant

    Mentat is the AI tool that assists you with any coding task, right from your command line. Unlike Copilot, Mentat coordinates edits across multiple locations and files. And unlike ChatGPT, Mentat already has the context of your project, no copy and pasting is required. Run Mentat from within your project directory. Mentat uses Git, so if your project doesn't already have Git set up, run git init. List the files you would like Mentat to read and edit as arguments. Mentat will add each of them...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CodiumAI PR-Agent

    CodiumAI PR-Agent

    AI-Powered tool for automated pull request analysis

    CodiumAI PR-Agent is an open-source tool aiming to help developers review pull requests faster and more efficiently. It automatically analyzes the pull request and can provide several types of commands. See the Usage Guide for instructions how to run the different tools from CLI, online usage, Or by automatically triggering them when a new PR is opened. You can try GPT-4 powered PR-Agent, on your public GitHub repository, instantly. Just mention @CodiumAI-Agent and add the desired command in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • 5
    AutoKeras

    AutoKeras

    AutoML library for deep learning

    AutoKeras: An AutoML system based on Keras. It is developed by DATA Lab at Texas A&M University. The goal of AutoKeras is to make machine learning accessible to everyone. AutoKeras only support Python 3. If you followed previous steps to use virtualenv to install tensorflow, you can just activate the virtualenv. Currently, AutoKeras is only compatible with Python >= 3.7 and TensorFlow >= 2.8.0. AutoKeras supports several tasks with extremely simple interface. AutoKeras would search for the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    CO3D (Common Objects in 3D)

    CO3D (Common Objects in 3D)

    Tooling for the Common Objects In 3D dataset

    CO3Dv2 (Common Objects in 3D, version 2) is a large-scale 3D computer vision dataset and toolkit from Facebook Research designed for training and evaluating category-level 3D reconstruction methods using real-world data. It builds upon the original CO3Dv1 dataset, expanding both scale and quality—featuring 2× more sequences and 4× more frames, with improved image fidelity, more accurate segmentation masks, and enhanced annotations for object-centric 3D reconstruction. CO3Dv2 enables research...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    SDGym

    SDGym

    Benchmarking synthetic data generation methods

    The Synthetic Data Gym (SDGym) is a benchmarking framework for modeling and generating synthetic data. Measure performance and memory usage across different synthetic data modeling techniques – classical statistics, deep learning and more! The SDGym library integrates with the Synthetic Data Vault ecosystem. You can use any of its synthesizers, datasets or metrics for benchmarking. You also customize the process to include your own work. Select any of the publicly available datasets from the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Avalanche

    Avalanche

    End-to-End Library for Continual Learning based on PyTorch

    Avalanche is an end-to-end Continual Learning library based on Pytorch, born within ContinualAI with the unique goal of providing a shared and collaborative open-source (MIT licensed) codebase for fast prototyping, training and reproducible evaluation of continual learning algorithms. Avalanche can help Continual Learning researchers in several ways. This module maintains a uniform API for data handling: mostly generating a stream of data from one or more datasets. It contains all the major...
    Downloads: 0 This Week
    Last Update:
    See Project
  • $300 in Free Credit for Your Google Cloud Projects Icon
    $300 in Free Credit for Your Google Cloud Projects

    Build, test, and explore on Google Cloud with $300 in free credit. No hidden charges. No surprise bills.

    Launch your next project with $300 in free Google Cloud credit—no hidden charges. Test, build, and deploy without risk. Use your credit across the Google Cloud platform to find what works best for your needs. After your credits are used, continue building with free monthly usage products. Only pay when you're ready to scale. Sign up in minutes and start exploring.
    Start Free Trial
  • 10
    Model Context Protocol Python SDK

    Model Context Protocol Python SDK

    The official Python SDK for Model Context Protocol servers and clients

    The Python SDK for Model Context Protocol provides utilities to interact with the protocol, enabling seamless communication with AI models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    CodeGeeX4

    CodeGeeX4

    CodeGeeX4-ALL-9B, a versatile model for all AI software development

    ...It supports tasks such as code completion, generation from natural language descriptions, code translation, bug fixing, and explanation. The repository provides model checkpoints, inference examples, and fine-tuning guides, making it adaptable for both research and practical software development workflows. With its open release, CodeGeeX4 aims to provide a transparent alternative to proprietary coding assistants while advancing the field of AI-assisted programming.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Kornia

    Kornia

    Open Source Differentiable Computer Vision Library

    Kornia is a differentiable computer vision library for PyTorch. It consists of a set of routines and differentiable modules to solve generic computer vision problems. At its core, the package uses PyTorch as its main backend both for efficiency and to take advantage of the reverse-mode auto-differentiation to define and compute the gradient of complex functions. Inspired by existing packages, this library is composed by a subset of packages containing operators that can be inserted within...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Albumentations

    Albumentations

    Fast image augmentation library and an easy-to-use wrapper

    Albumentations is a computer vision tool that boosts the performance of deep convolutional neural networks. Albumentations is a Python library for fast and flexible image augmentations. Albumentations efficiently implements a rich variety of image transform operations that are optimized for performance, and does so while providing a concise, yet powerful image augmentation interface for different computer vision tasks, including object classification, segmentation, and detection....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    AWS Deep Learning Containers

    AWS Deep Learning Containers

    A set of Docker images for training and serving models in TensorFlow

    AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep Learning Containers provide optimized environments with TensorFlow and MXNet, Nvidia CUDA (for GPU instances), and Intel MKL (for CPU instances) libraries and are available in the Amazon Elastic Container Registry (Amazon ECR). The AWS DLCs are used in Amazon SageMaker as the default vehicles for your SageMaker jobs such as training, inference,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    torchvision

    torchvision

    Datasets, transforms and models specific to Computer Vision

    The torchvision package consists of popular datasets, model architectures, and common image transformations for computer vision. We recommend Anaconda as Python package management system. Torchvision currently supports Pillow (default), Pillow-SIMD, which is a much faster drop-in replacement for Pillow with SIMD, if installed will be used as the default. Also, accimage, if installed can be activated by calling torchvision.set_image_backend('accimage'), libpng, which can be installed via...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Superduper

    Superduper

    Superduper: Integrate AI models and machine learning workflows

    Superduper is a Python-based framework for building end-2-end AI-data workflows and applications on your own data, integrating with major databases. It supports the latest technologies and techniques, including LLMs, vector-search, RAG, and multimodality as well as classical AI and ML paradigms. Developers may leverage Superduper by building compositional and declarative objects that out-source the details of deployment, orchestration versioning, and more to the Superduper engine. This...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    A unified, comprehensive and efficient recommendation library. We design general and extensible data structures to unify the formatting and usage of various recommendation datasets. We implement more than 100 commonly used recommendation algorithms and provide formatted copies of 28 recommendation datasets. We support a series of widely adopted evaluation protocols or settings for testing and comparing recommendation algorithms. RecBole is developed based on Python and PyTorch for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Best-of Machine Learning with Python

    Best-of Machine Learning with Python

    A ranked list of awesome machine learning Python libraries

    This curated list contains 900 awesome open-source projects with a total of 3.3M stars grouped into 34 categories. All projects are ranked by a project-quality score, which is calculated based on various metrics automatically collected from GitHub and different package managers. If you like to add or update projects, feel free to open an issue, submit a pull request, or directly edit the projects.yaml. Contributions are very welcome! General-purpose machine learning and deep learning...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    zvt

    zvt

    Modular quant framework

    For practical trading, a complex algorithm is fragile, a complex algorithm building on a complex facility is more fragile, complex algorithm building on a complex facility by a complex team is more and more fragile. zvt wants to provide a simple facility for building a straightforward algorithm. Technologies come and technologies go, but market insight is forever. Your world is built by core concepts inside you, so it’s you. zvt world is built by core concepts inside the market, so it’s zvt....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 0 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB