Showing 62 open source projects for "parallel"

View related business solutions
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized evaluation scripts and dictionaries. By mapping languages into a common vector space, MUSE makes it straightforward to build cross-lingual applications where resources are scarce for some languages. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Scalable Distributed Deep-RL

    Scalable Distributed Deep-RL

    A TensorFlow implementation of Scalable Distributed Deep-RL

    ...IMPALA introduced a new paradigm for efficiently training agents across large-scale environments by decoupling acting and learning processes. In this architecture, multiple actor processes interact with their environments in parallel to collect trajectories, which are then asynchronously sent to a centralized learner for policy updates. The learner uses importance weighting to correct for policy lag between actors and the learner, enabling stable off-policy training at scale. This design allows the system to scale efficiently to hundreds of environments and billions of frames while maintaining sample efficiency and stability. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    ...Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not offer the data processing flexibility needed in research. Tensorpack squeezes the most performance out of pure Python with various auto parallelization strategies. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Virtual Laboratory Environment

    Virtual Laboratory Environment

    A multi-modeling and simulation environment to study complex systems

    VLE is a multi-modeling and simulation environment to study complex dynamic systems. VLE is based on the discrete event specification DEVS. and it implements the DSDE formalism (A merge of Dynamic Structure DEVS, DSDEVS, with Parallel DEVS, PDEVS). VLE provides a complete set of C++ libraries, called VFL (VLE Foundation Libraries), to develop DEVS models, to gets results of simulations, to launch simulation on cluster. The models can be developed with the DEVS formalism or with the classical mathematical formalism: Ordinary Differential Equation with Euler, Range-Kutta or QSS integrator, Finite state automaton (FDDEVS, UML State chart, Hybrid Petri net). ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 5
    OpenSeq2Seq

    OpenSeq2Seq

    Toolkit for efficient experimentation with Speech Recognition

    ...The toolkit includes ready-made models for neural machine translation, automatic speech recognition, speech synthesis, language modeling, and additional NLP tasks such as sentiment analysis. It supports multi-GPU and multi-node data-parallel training, and integrates with Horovod to scale out across large GPU clusters. Mixed-precision support (float16) is optimized for NVIDIA Volta and Turing GPUs, allowing significant speedups and memory savings without sacrificing model quality. The project comes with configuration-driven training scripts, documentation, and examples that demonstrate how to set up pipelines for tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Universe Starter Agent

    Universe Starter Agent

    A starter agent that can solve a number of universe environments

    ...Under the hood, this starter agent implements a version of the A3C (Asynchronous Advantage Actor-Critic) algorithm, adapted for the specific challenges of Universe environments (e.g., network latency, VNC streaming, asynchronous observations). The repo includes modules like train.py, worker.py, model.py, a3c.py, and envs.py to support training, parallel worker management, policy/critics, and environment wrappers.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    ...The Intel Math Kernel Library takes advantages of the parallelization and vectorization capabilities of Intel Xeon and Xeon Phi systems. When hyperthreading is enabled on the system, we recommend the following KMP_AFFINITY setting to make sure parallel threads are 1:1 mapped to the available physical cores.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    aCompute

    aCompute

    Aims to enable researcher to tap in to mobile computing capability

    This is a software agent based computing program that will enable researchers and other users to tap in computing power of machine available by sharing work load on the fly with zero configuration on network & resources A self organizing agent program that will understand network and its resource. where as the only job left to researcher is to split up jobs in several chunks of programs either parallel or sequential jobs and go issue the job (A visual Modeler or Scripting support need to be yet designed) Software agents will automatically manage the rest or resource management, sharing , cloning of tasks etc. new resources can be added and removed from the system on fly; in layman terms the project will create an agent program that enable sharing & execution of program among all the available resources whether it be desktop, laptop, pda . thereby one can accelerate research to the very extent of resource availability with out bothering about anything... ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Platform for parallel computation in the Amazon cloud, including machine learning ensembles written in R for computational biology and other areas of scientific research. Home to MR-Tandem, a hadoop-enabled fork of X!Tandem peptide search engine.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 10
    PyLife is an implementation of the game of life algorithm featuring parallel programming. It uses MPI and python to achieve a consistent software architecture and reliably performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    pySPACE

    pySPACE

    Signal Processing and Classification Environment in Python using YAML

    pySPACE is a modular software for processing of large data streams that has been specifically designed to enable distributed execution and empirical evaluation of signal processing chains. Various signal processing algorithms (so called nodes) are available within the software, from finite impulse response filters over data-dependent spatial filters (e.g. CSP, xDAWN) to established classifiers (e.g. SVM, LDA). pySPACE incorporates the concept of node and node chains of the MDP framework. Due...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    ExoPlanet

    ExoPlanet

    GUI based toolkit for running common Machine Learning algorithms.

    ExoPlanet provides a graphical interface for the construction, evaluation and application of a Machine Learning model in predictive analysis. With the back-end built using the numpy and scikit-learn libraries, as a toolkit, ExoPlanet couples fast and well tested algorithms, a UI designed over the Qt4 framework, and graphs rendered using Matplotlib to provide the user with a rich interface, rapid analytics and interactive visuals. ExoPlanet is designed to have a minimal learning curve,...
    Downloads: 0 This Week
    Last Update:
    See Project