Showing 212 open source projects for "model train design"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Optimize every aspect of hiring with Greenhouse Recruiting Icon
    Optimize every aspect of hiring with Greenhouse Recruiting

    Hire for what's next.

    What’s next for many of us is changing. Your company’s ability to hire great talent is as important as ever – so you’ll be ready for whatever’s ahead. Whether you need to scale your team quickly or improve your hiring process, Greenhouse gives you the right technology, know-how and support to take on what’s next.
    Learn More
  • 1
    Ludwig AI

    Ludwig AI

    Low-code framework for building custom LLMs, neural networks

    ...Retain full control of your models down to the activation functions. Support for hyperparameter optimization, explainability, and rich metric visualizations. Experiment with different model architectures, tasks, features, and modalities with just a few parameter changes in the config. Think building blocks for deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    BioNeMo

    BioNeMo

    BioNeMo Framework: For building and adapting AI models

    BioNeMo is an AI-powered framework developed by NVIDIA for protein and molecular generation using deep learning models. It provides researchers and developers with tools to design, analyze, and optimize biological molecules, aiding in drug discovery and synthetic biology applications.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    pomegranate

    pomegranate

    Fast, flexible and easy to use probabilistic modelling in Python

    ...Together, these two design choices enable a flexibility not seen in any other probabilistic modeling package.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Eigent

    Eigent

    The Open Source Cowork Desktop to Unlock Your Exceptional Productivity

    ...It enables multiple specialized AI agents to collaborate in parallel, turning complex workflows into automated, end-to-end tasks. Built on the CAMEL-AI multi-agent framework, Eigent emphasizes productivity, flexibility, and transparent system design. You can run Eigent fully locally for maximum privacy and data control, or choose a cloud-connected experience for quick access. The platform supports a wide range of AI models and integrates powerful tools through the Model Context Protocol (MCP). With human-in-the-loop controls and enterprise-ready features, Eigent balances automation with oversight and security.
    Downloads: 7 This Week
    Last Update:
    See Project
  • Logistics Dispatch Solutions for Developers Icon
    Logistics Dispatch Solutions for Developers

    DNA’s JOpt has been designed to be easily integrated into any logistic- and transportation-management-software and standard ERP systems.

    For staff dispatching, such as sales reps, mobile service, or workforce. For truck shipment allocation in daily transportation and logistics (scheduling, tour optimization, etc.). For waste management and District Planning. and for generally, highly constrained problem sets.
    Learn More
  • 5
    smolagents

    smolagents

    Agents write python code to call tools and orchestrate other agents

    ...We provide our definition in this page, where you’ll also find tips for when to use them or not (spoilers: you’ll often be better off without agents). smolagents is a lightweight framework for building AI agents using large language models (LLMs). It simplifies the development of AI-driven applications by providing tools to create, train, and deploy language model-based agents.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Step-Audio-EditX

    Step-Audio-EditX

    LLM-based Reinforcement Learning audio edit model

    Step-Audio-EditX is an open-source, 3 billion-parameter audio model from StepFun AI designed to make expressive and precise editing of speech and audio as easy as text editing. Rather than treating audio editing as low-level waveform manipulation, this model converts speech into a sequence of discrete “audio tokens” (via a dual-codebook tokenizer) — combining a linguistic token stream and a semantic (prosody/emotion/style) token stream — thereby abstracting audio editing into high-level...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Janus

    Janus

    Unified Multimodal Understanding and Generation Models

    Janus is a sophisticated open-source project from DeepSeek AI that aims to unify both visual understanding and image generation in a single model architecture. Rather than having separate systems for “look and describe” and “prompt and generate”, Janus uses an autoregressive transformer framework with a decoupled visual encoder—allowing it to ingest images for comprehension and to produce images from text prompts with shared internal representations. The design tackles long-standing conflicts in multimodal models: namely that the visual encoder has to serve both analysis (understanding) and synthesis (generation) roles. ...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 8
    DeepSpeed

    DeepSpeed

    Deep learning optimization library: makes distributed training easy

    DeepSpeed is an easy-to-use deep learning optimization software suite that enables unprecedented scale and speed for Deep Learning Training and Inference. With DeepSpeed you can: 1. Train/Inference dense or sparse models with billions or trillions of parameters 2. Achieve excellent system throughput and efficiently scale to thousands of GPUs 3. Train/Inference on resource constrained GPU systems 4. Achieve unprecedented low latency and high throughput for inference 5. Achieve extreme compression for an unparalleled inference latency and model size reduction with low costs DeepSpeed offers a confluence of system innovations, that has made large scale DL training effective, and efficient, greatly improved ease of use, and redefined the DL training landscape in terms of scale that is possible. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Bert-VITS2

    Bert-VITS2

    VITS2 backbone with multilingual-bert

    ...The core idea is to use BERT-style contextual embeddings for text encoding while relying on a refined VITS2 architecture for acoustic generation and vocoding. The repository includes everything needed to train, fine-tune, and run the model, from configuration files to preprocessing scripts, spectrogram utilities, and training entrypoints for multi-GPU and multi-node setups. It provides emotional modeling through “emo embeddings,” allowing voices to be conditioned on different affective states during synthesis. Releases include optimizations for Japanese and English alignment, expanded training data, spec caching and pre-generation tools, as well as ONNX export for more lightweight inference deployments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Accounting Software Built for Owners, and Their Clients Icon
    Accounting Software Built for Owners, and Their Clients

    Make invoicing and billing painless for your small business with FreshBooks.

    Balancing your books, client relationships, and business isn’t easy. FreshBooks gives you the info and time you need to focus on your big picture—your business, team, and clients.
    Learn More
  • 10
    tsai

    tsai

    Time series Timeseries Deep Learning Machine Learning Pytorch fastai

    ...If you require any of the dependencies that is not installed, tsai will ask you to install it when necessary) We've also added a new PredictionDynamics callback that will display the predictions during training. This is the type of output you would get in a classification task. New tutorial notebook on how to train your model with larger-than-memory datasets in less time achieving up to 100% GPU usage! See our new tutorial notebook on how to track your experiments with Weights & Biases
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    MLPerf

    MLPerf

    Reference implementations of MLPerf™ training benchmarks

    This is a repository of reference implementations for the MLPerf training benchmarks. These implementations are valid as starting points for benchmark implementations but are not fully optimized and are not intended to be used for "real" performance measurements of software frameworks or hardware. Benchmarking the performance of training ML models on a wide variety of use cases, software, and hardware drives AI performance across the tech industry. The MLPerf Training working group draws on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    NeuralForecast

    NeuralForecast

    Scalable and user friendly neural forecasting algorithms.

    NeuralForecast offers a large collection of neural forecasting models focusing on their performance, usability, and robustness. The models range from classic networks like RNNs to the latest transformers: MLP, LSTM, GRU, RNN, TCN, TimesNet, BiTCN, DeepAR, NBEATS, NBEATSx, NHITS, TiDE, DeepNPTS, TSMixer, TSMixerx, MLPMultivariate, DLinear, NLinear, TFT, Informer, AutoFormer, FedFormer, PatchTST, iTransformer, StemGNN, and TimeLLM. There is a shared belief in Neural forecasting methods'...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 13
    LuxTTS

    LuxTTS

    A high-quality rapid TTS voice cloning model

    ...Intended for developers, hobbyists, and creators, the repository includes installation instructions, usage examples, and Python APIs that make it feasible to integrate the model in local workflows, web demos, or production systems. Its design emphasizes efficiency and practicality, fitting within modest GPU memory footprints.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming. Easy model building using flexible encoder-decoder architecture. Modules: CoordConv, SCSE, Hypercolumn, Depthwise separable convolution and more. GPU-friendly test-time augmentation TTA for segmentation and classification. GPU-friendly inference on huge (5000x5000) images. Every-day common routines (fix/restore random seed, filesystem utils, metrics). ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Qwen3-Omni

    Qwen3-Omni

    Qwen3-omni is a natively end-to-end, omni-modal LLM

    Qwen3-Omni is a natively end-to-end multilingual omni-modal foundation model that processes text, images, audio, and video and delivers real-time streaming responses in text and natural speech. It uses a Thinker-Talker architecture with a Mixture-of-Experts (MoE) design, early text-first pretraining, and mixed multimodal training to support strong performance across all modalities without sacrificing text or image quality.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 16
    Generative AI for Beginners (Version 3)

    Generative AI for Beginners (Version 3)

    21 Lessons, Get Started Building with Generative AI

    Generative AI for Beginners is a 21-lesson course by Microsoft Cloud Advocates that teaches the fundamentals of building generative AI applications in a practical, project-oriented way. Lessons are split into “Learn” modules for core concepts and “Build” modules with hands-on code in Python and TypeScript, so you can jump in at any point that matches your goals. The course covers everything from model selection, prompt engineering, and chat/text/image app patterns to secure development...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    UltraRAG

    UltraRAG

    Less Code, Lower Barrier, Faster Deployment

    UltraRAG 2.0 is a low-code, MCP-enabled RAG framework that aims to lower the barrier to building complex retrieval pipelines for research and production. It provides end-to-end recipes—from encoding and indexing corpora to deploying retrievers and LLMs—so users can reproduce baselines and iterate rapidly. The toolkit comes with built-in support for popular RAG datasets, large corpora, and canonical baselines, plus documentation that walks from “quick start” to debugging and case analysis. It...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    OpenCompass

    OpenCompass

    OpenCompass is an LLM evaluation platform

    Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models. OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation. Pre-support for 20+ HuggingFace and API models, a model evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PML

    PML

    The easiest way to use deep metric learning in your application

    This library contains 9 modules, each of which can be used independently within your existing codebase, or combined together for a complete train/test workflow. To compute the loss in your training loop, pass in the embeddings computed by your model, and the corresponding labels. The embeddings should have size (N, embedding_size), and the labels should have size (N), where N is the batch size. The TripletMarginLoss computes all possible triplets within the batch, based on the labels you pass into it. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to benchmarking results that report large gains over prior unsupervised baselines. It’s intended for researchers exploring self-supervised and unsupervised recognition, offering a practical path to scale beyond costly labeled corpora. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Sapiens

    Sapiens

    High-resolution models for human tasks

    Sapiens is a research framework from Meta AI focused on embodied intelligence and human-like multimodal learning, aiming to train agents that can perceive, reason, and act in complex environments. It integrates sensory inputs such as vision, audio, and proprioception into a unified learning architecture that allows agents to understand and adapt to their surroundings dynamically. The project emphasizes long-horizon reasoning and cross-modal grounding—connecting language, perception, and action into a single agentic model capable of following abstract goals. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    snorkel

    snorkel

    A system for quickly generating training data with weak supervision

    The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI application development platform based on the core ideas behind Snorkel. The Snorkel project started at Stanford in 2016 with a simple technical bet: that it would increasingly be the training data, not the models, algorithms, or infrastructure, that decided whether a machine learning project succeeded or failed. Given this premise, we set out to explore the radical idea that you could bring mathematical and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement learning, etc. The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy. Reported results highlight dramatic speedups in time-to-first-token and competitive quality versus contemporary open VLMs, including comparisons across small and larger variants. The repository documents model variants, showcases head-to-head numbers against known baselines, and explains how the encoder integrates with common LLM backbones. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    AutoGPT

    AutoGPT

    Powerful tool that lets you create and run intelligent agents

    AutoGPT is an experimental open-source application showcasing the capabilities of the GPT-4 language model. This program, driven by GPT-4, chains together LLM "thoughts", to autonomously achieve whatever goal you set. As one of the first examples of GPT-4 running fully autonomously, AutoGPT pushes the boundaries of what is possible with AI.
    Downloads: 11 This Week
    Last Update:
    See Project