Showing 68 open source projects for "graph"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • All-in-one security tool helps you prevent ransomware and breaches. Icon
    All-in-one security tool helps you prevent ransomware and breaches.

    SIEM + Detection and Response for IT Teams

    Blumira’s detection and response platform enables faster resolution of threats to help you stop ransomware attacks and prevent data breaches. We surface real threats, providing meaningful findings so you know what to prioritize. With our 3-step rapid response, you can automatically block known threats, use our playbooks for easy remediation, or contact our security team for additional guidance. Our responsive security team helps with onboarding, triage and ongoing consultations to continuously help your organization improve your security coverage.
    Learn More
  • 1
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    A PyTorch implementation of "Capsule Graph Neural Network" (ICLR 2019). The high-quality node embeddings learned from the Graph Neural Networks (GNNs) have been applied to a wide range of node-based applications and some of them have achieved state-of-the-art (SOTA) performance. However, when applying node embeddings learned from GNNs to generate graph embeddings, the scalar node representation may not suffice to preserve the node/graph properties efficiently, resulting in sub-optimal graph embeddings. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Awesome Graph Classification

    Awesome Graph Classification

    Graph embedding, classification and representation learning papers

    A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations. Relevant graph classification benchmark datasets are available. Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Couler

    Couler

    Unified Interface for Constructing and Managing Workflows

    Couler is a system designed for unified machine learning workflow optimization in the cloud. Couler endeavors to provide a unified interface for constructing and optimizing workflows across various workflow engines, such as Argo Workflows, Tekton Pipelines, and Apache Airflow. Couler enhances workflow efficiency through features like Autonomous Workflow Construction, Automatic Artifact Caching Mechanisms, Big Workflow Auto Parallelism Optimization, and Automatic Hyperparameters Tuning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    ...It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Awesome Community Detection Research

    Awesome Community Detection Research

    A curated list of community detection research papers

    A collection of community detection papers. A curated list of community detection research papers with implementations. Similar collections about graph classification, classification/regression tree, fraud detection, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    ...Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations, and more. Effortless device placement for using multiple CPU/GPU. The high-level API currently supports the most of the recent deep learning models, such as Convolutions, LSTM, BiRNN, BatchNorm, etc.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    gradslam

    gradslam

    gradslam is an open source differentiable dense SLAM library

    ...However, learning representations for SLAM has been an open question, because traditional SLAM systems are not end-to-end differentiable. In this work, we present gradSLAM, a differentiable computational graph take on SLAM. Leveraging the automatic differentiation capabilities of computational graphs, gradSLAM enables the design of SLAM systems that allow for gradient-based learning across each of their components, or the system as a whole.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    StellarGraph is a Python library for machine learning on graphs and networks. The StellarGraph library offers state-of-the-art algorithms for graph machine learning, making it easy to discover patterns and answer questions about graph-structured data. It can solve many machine learning tasks. Graph-structured data represent entities as nodes (or vertices) and relationships between them as edges (or links), and can include data associated with either as attributes. For example, a graph can contain people as nodes and friendships between them as links, with data like a person’s age and the date a friendship was established. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    Delta ML

    Delta ML

    Deep learning based natural language and speech processing platform

    ...Use configuration files to easily tune parameters and network structures. What you see in training is what you get in serving: all data processing and features extraction are integrated into a model graph. Text classification, named entity recognition, question and answering, text summarization, etc. Uniform I/O interfaces and no changes for new models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Deep Learning Drizzle

    Deep Learning Drizzle

    Drench yourself in Deep Learning, Reinforcement Learning

    ...Optimization courses which form the foundation for ML, DL, RL. Computer Vision courses which are DL & ML heavy. Speech recognition courses which are DL heavy. Structured Courses on Geometric, Graph Neural Networks. Section on Autonomous Vehicles. Section on Computer Graphics with ML/DL focus.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    PyTorch-BigGraph

    PyTorch-BigGraph

    Generate embeddings from large-scale graph-structured data

    ...The toolkit includes evaluation metrics and export tools so learned embeddings can be used in downstream nearest-neighbor search, recommendation, or analytics. In practice, PBG’s design lets practitioners train high-quality graph embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    PyTorch pretrained BigGAN

    PyTorch pretrained BigGAN

    PyTorch implementation of BigGAN with pretrained weights

    ...This PyTorch implementation of BigGAN is provided with the pretrained 128x128, 256x256 and 512x512 models by DeepMind. We also provide the scripts used to download and convert these models from the TensorFlow Hub models. This reimplementation was done from the raw computation graph of the Tensorflow version and behave similarly to the TensorFlow version (variance of the output difference of the order of 1e-5). This implementation currently only contains the generator as the weights of the discriminator were not released (although the structure of the discriminator is very similar to the generator so it could be added pretty easily.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    SG2Im

    SG2Im

    Code for "Image Generation from Scene Graphs", Johnson et al, CVPR 201

    sg2im is a research codebase that learns to synthesize images from scene graphs—structured descriptions of objects and their relationships. Instead of conditioning on free-form text alone, it leverages graph structure to control layout and interactions, generating scenes that respect constraints like “person left of dog” or “cup on table.” The pipeline typically predicts object layouts (bounding boxes and masks) from the graph, then renders a realistic image conditioned on those layouts. This separation lets the model reason about geometry and composition before committing to texture and color, improving spatial fidelity. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Tangent

    Tangent

    Source-to-source debuggable derivatives in pure Python

    Existing libraries implement automatic differentiation by tracing a program's execution (at runtime, like PyTorch) or by staging out a dynamic data-flow graph and then differentiating the graph (ahead-of-time, like TensorFlow). In contrast, Tangent performs ahead-of-time autodiff on the Python source code itself, and produces Python source code as its output. Tangent fills a unique location in the space of machine learning tools. As a result, you can finally read your automatic derivative code just like the rest of your program. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    This project develops a simple, fast and easy to use Python graph library using NumPy, Scipy and PySparse.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    RISO: distributed, heterogeneous Bayesian belief networks. Belief network: a probability model defined on an acyclic directed graph; distributed: nodes can be on different hosts; and heterogeneous: allowing different types of conditional distributions.
    Downloads: 0 This Week
    Last Update:
    See Project