Showing 1992 open source projects for "python-i2c-tiny-usb"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • 1
    YYeTsBot

    YYeTsBot

    Renren Film and Television bot, fully connected to Renren resources

    Renren Film and Television bot, fully connected to all Renren Film and television resources without deletion of resources. The database of this site is permanently open source and free. You can directly send the name of the episode you want to watch, and you can choose to share the webpage or link (ed2k and magnet links). When searching for resources, it will be searched according to my predetermined priority (everyone video offline, subtitle man), of course, you can also use commands to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Mini Agent

    Mini Agent

    A minimal yet professional single agent demo project

    Mini-Agent is a minimal yet production-minded demo project that shows how to build a serious command-line AI agent around the MiniMax-M2 model. It is designed both as a reference implementation and as a usable agent, demonstrating a full execution loop that includes planning, tool calls, and iterative refinement. The project exposes an Anthropic-compatible API interface and fully supports interleaved thinking, letting the agent alternate between reasoning steps and tool invocations during...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Diplomacy Cicero

    Diplomacy Cicero

    Code for Cicero, an AI agent that plays the game of Diplomacy

    ...It supports two variants: Cicero (which handles full “press” negotiation) and Diplodocus (a variant focused on no-press diplomacy) as described in the README. The codebase is implemented primarily in Python with performance-critical components in C++ (via pybind11 bindings) and is configured to run in a high‐GPU cluster environment. Configuration is managed via protobuf files to define tasks such as self-play, benchmark agent comparisons, and RL training. The project is now archived and read-only, reflecting that it is no longer actively developed but remains publicly available for research use.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    LlamaParse

    LlamaParse

    Parse files for optimal RAG

    LlamaParse is a GenAI-native document parser that can parse complex document data for any downstream LLM use case (RAG, agents). Load in 160+ data sources and data formats, from unstructured, and semi-structured, to structured data (API's, PDFs, documents, SQL, etc.) Store and index your data for different use cases. Integrate with 40+ vector stores, document stores, graph stores, and SQL db providers.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Minigrid

    Minigrid

    Simple and easily configurable grid world environments

    Minigrid is a lightweight, minimalistic grid-world environment library for reinforcement learning (RL) research. It provides a suite of simple 2D grid-based tasks (e.g., navigating mazes, unlocking doors, carrying keys) where an agent moves in discrete steps and interacts with objects. The design emphasizes speed (agents can run thousands of steps per second), low dependency overhead, and high customizability — making it easy to define new maps, new tasks, or wrappers. It supports the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    UltraRAG

    UltraRAG

    Less Code, Lower Barrier, Faster Deployment

    UltraRAG 2.0 is a low-code, MCP-enabled RAG framework that aims to lower the barrier to building complex retrieval pipelines for research and production. It provides end-to-end recipes—from encoding and indexing corpora to deploying retrievers and LLMs—so users can reproduce baselines and iterate rapidly. The toolkit comes with built-in support for popular RAG datasets, large corpora, and canonical baselines, plus documentation that walks from “quick start” to debugging and case analysis. It...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    VMZ (Video Model Zoo)

    VMZ (Video Model Zoo)

    VMZ: Model Zoo for Video Modeling

    The codebase was designed to help researchers and practitioners quickly reproduce FAIR’s results and leverage robust pre-trained backbones for downstream tasks. It also integrates Gradient Blending, an audio-visual modeling method that fuses modalities effectively (available in the Caffe2 implementation). Although VMZ is now archived and no longer actively maintained, it remains a valuable reference for understanding early large-scale video model training, transfer learning, and multimodal...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    CodeGeeX4

    CodeGeeX4

    CodeGeeX4-ALL-9B, a versatile model for all AI software development

    CodeGeeX4 is the fourth-generation open source multilingual code large language model (LLM) developed by ZhipuAI. Designed as a powerful AI coding assistant, it supports over 100 programming languages and has been trained on a massive code and natural language corpus. Compared to its predecessors, CodeGeeX4 introduces improved reasoning, stronger alignment with developer needs, and better performance on real-world programming benchmarks. It supports tasks such as code completion, generation...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    Langroid

    Langroid

    Harness LLMs with Multi-Agent Programming

    Given the remarkable abilities of recent Large Language Models (LLMs), there is an unprecedented opportunity to build intelligent applications powered by this transformative technology. The top question for any enterprise is: how best to harness the power of LLMs for complex applications? For technical and practical reasons, building LLM-powered applications is not as simple as throwing a task at an LLM system and expecting it to do it. Effectively leveraging LLMs at scale requires a...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    garak

    garak

    Developers and anyone seeking an LLM solution to scan for vulnerabilit

    garak checks if an LLM can be made to fail in a way we don't want. garak probes for hallucination, data leakage, prompt injection, misinformation, toxicity generation, jailbreaks, and many other weaknesses. garak's a free tool, we love developing it and are always interested in adding functionality to support applications. garak is a command-line tool, it's developed in Linux and OSX. Just grab it from PyPI and you should be good to go. The standard pip version of garak is updated...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    PaddleX

    PaddleX

    PaddlePaddle End-to-End Development Toolkit

    PaddleX is a deep learning full-process development tool based on the core framework, development kit, and tool components of Paddle. It has three characteristics opening up the whole process, integrating industrial practice, and being easy to use and integrate. Image classification and labeling is the most basic and simplest labeling task. Users only need to put pictures belonging to the same category in the same folder. When the model is trained, we need to divide the training set, the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    PyTorch Forecasting

    PyTorch Forecasting

    Time series forecasting with PyTorch

    PyTorch Forecasting aims to ease state-of-the-art time series forecasting with neural networks for both real-world cases and research alike. The goal is to provide a high-level API with maximum flexibility for professionals and reasonable defaults for beginners. A time series dataset class that abstracts handling variable transformations, missing values, randomized subsampling, multiple history lengths, etc. A base model class that provides basic training of time series models along with...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Self-Operating Computer

    Self-Operating Computer

    A framework to enable multimodal models to operate a computer

    The Self-Operating Computer Framework is an innovative system that enables multimodal models to autonomously operate a computer by interpreting the screen and executing mouse and keyboard actions to achieve specified objectives. This framework is compatible with various multimodal models and currently integrates with GPT-4o, o1, Gemini Pro Vision, Claude 3, and LLaVa. Notably, it was the first known project to implement a multimodal model capable of viewing and controlling a computer screen....
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    Matrix

    Matrix

    Multi-Agent daTa geneRation Infra and eXperimentation framework

    Matrix is a distributed, large-scale engine for multi-agent synthetic data generation and experiments: it provides the infrastructure to run thousands of “agentic” workflows concurrently (e.g. multiple LLMs interacting, reasoning, generating content, data-processing pipelines) by leveraging distributed computing (like Ray + cluster management). The idea is to treat data generation as a “data-to-data” transformation: each input item defines a task, and the runtime orchestrates asynchronous,...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 18
    CodeGeeX2

    CodeGeeX2

    CodeGeeX2: A More Powerful Multilingual Code Generation Model

    CodeGeeX2 is the second-generation multilingual code generation model from ZhipuAI, built upon the ChatGLM2-6B architecture and trained on 600B code tokens. Compared to the first generation, it delivers a significant boost in programming ability across multiple languages, outperforming even larger models like StarCoder-15B in some benchmarks despite having only 6B parameters. The model excels at code generation, translation, summarization, debugging, and comment generation, and it supports...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 19
    aisuite

    aisuite

    Simple, unified interface to multiple Generative AI providers

    Simple, unified interface to multiple Generative AI providers. aisuite makes it easy for developers to use multiple LLM through a standardized interface. Using an interface similar to OpenAI's, aisuite makes it easy to interact with the most popular LLMs and compare the results. It is a thin wrapper around Python client libraries and allows creators to seamlessly swap out and test responses from different LLM providers without changing their code. Today, the library is primarily focused on chat completions. We will expand it to cover more use cases in the near future. Currently supported providers are - OpenAI, Anthropic, Azure, Google, AWS, Groq, Mistral, HuggingFace and Ollama. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Core ML Tools

    Core ML Tools

    Core ML tools contain supporting tools for Core ML model conversion

    Use Core ML Tools (coremltools) to convert machine learning models from third-party libraries to the Core ML format. This Python package contains the supporting tools for converting models from training libraries. Core ML is an Apple framework to integrate machine learning models into your app. Core ML provides a unified representation for all models. Your app uses Core ML APIs and user data to make predictions, and to fine-tune models, all on the user’s device.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    AutoMLOps

    AutoMLOps

    Build MLOps Pipelines in Minutes

    AutoMLOps is a service that generates, provisions, and deploys CI/CD integrated MLOps pipelines, bridging the gap between Data Science and DevOps. AutoMLOps provides a repeatable process that dramatically reduces the time required to build MLOps pipelines. The service generates a containerized MLOps codebase, provides infrastructure-as-code to provision and maintain the underlying MLOps infra, and provides deployment functionalities to trigger and run MLOps pipelines. AutoMLOps gives...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    VectorDB

    VectorDB

    A Python vector database you just need, no more, no less

    vectordb is a Pythonic vector database offers a comprehensive suite of CRUD (Create, Read, Update, Delete) operations and robust scalability options, including sharding and replication. It's readily deployable in a variety of environments, from local to on-premise and cloud. vectordb delivers exactly what you need - no more, no less. It's a testament to effective Pythonic design without over-engineering, making it a lean yet powerful solution for all your needs. vectordb capitalizes on the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    BertViz

    BertViz

    BertViz: Visualize Attention in NLP Models (BERT, GPT2, BART, etc.)

    BertViz is an interactive tool for visualizing attention in Transformer language models such as BERT, GPT2, or T5. It can be run inside a Jupyter or Colab notebook through a simple Python API that supports most Huggingface models. BertViz extends the Tensor2Tensor visualization tool by Llion Jones, providing multiple views that each offer a unique lens into the attention mechanism. The head view visualizes attention for one or more attention heads in the same layer. It is based on the excellent Tensor2Tensor visualization tool. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    RecBole

    RecBole

    A unified, comprehensive and efficient recommendation library

    ...We implement more than 100 commonly used recommendation algorithms and provide formatted copies of 28 recommendation datasets. We support a series of widely adopted evaluation protocols or settings for testing and comparing recommendation algorithms. RecBole is developed based on Python and PyTorch for reproducing and developing recommendation algorithms in a unified, comprehensive and efficient framework for research purpose. It can be installed from pip, conda and source, and is easy to use. We have implemented more than 100 recommender system models, covering four common recommender system categories in RecBole and eight toolkits of RecBole2.0, including General Recommendation, Sequential Recommendation, Context-aware Recommendation, and Knowledge-based Recommendation and sub-packages.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Xfl

    Xfl

    An Efficient and Easy-to-use Federated Learning Framework

    XFL is a lightweight, high-performance federated learning framework supporting both horizontal and vertical FL. It integrates homomorphic encryption, DP, secure MPC, and optimizes network resilience. Compatible with major ML libraries and deployable via Docker or Conda.
    Downloads: 0 This Week
    Last Update:
    See Project