Showing 1792 open source projects for "python windows 10"

View related business solutions
  • MongoDB Atlas runs apps anywhere Icon
    MongoDB Atlas runs apps anywhere

    Deploy in 115+ regions with the modern database for every enterprise.

    MongoDB Atlas gives you the freedom to build and run modern applications anywhere—across AWS, Azure, and Google Cloud. With global availability in over 115 regions, Atlas lets you deploy close to your users, meet compliance needs, and scale with confidence across any geography.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    Paper2GUI

    Paper2GUI

    Convert AI papers to GUI

    Convert AI papers to GUI,Make it easy and convenient for everyone to use artificial intelligence technology。让每个人都简单方便的使用前沿人工智能技术 Paper2GUI: An AI desktop APP toolbox for ordinary people. It can be used immediately without installation. It already supports 40+ AI models, covering AI painting, speech synthesis, video frame complementing, video super-resolution, object detection, and image stylization. , OCR recognition and other fields. Support Windows, Mac, Linux systems. Paper2GUI:...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 2
    StyleTTS 2

    StyleTTS 2

    Towards Human-Level Text-to-Speech through Style Diffusion

    StyleTTS2 is a state-of-the-art text-to-speech system that aims for human-level naturalness by combining style diffusion, adversarial training, and large speech language models. It extends the original StyleTTS idea by introducing a style diffusion model that can sample rich, realistic speaking styles conditioned on reference speech, allowing highly expressive and diverse prosody. The architecture uses a two-stage training process and leverages an auxiliary speech language model to guide...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Qwen3 Embedding

    Qwen3 Embedding

    Designed for text embedding and ranking tasks

    Qwen3-Embedding is a model series from the Qwen family designed specifically for text embedding and ranking tasks. It builds upon the Qwen3 base/dense models and offers several sizes (0.6B, 4B, 8B parameters), for both embedding and reranking, with high multilingual capability, long‐context understanding, and reasoning. It achieves state-of-the-art performance on benchmarks like MTEB (Multilingual Text Embedding Benchmark) and supports instruction-aware embedding (i.e. embedding task...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 4
    Fish Speech

    Fish Speech

    SOTA Open Source TTS

    Fish Speech is a state-of-the-art open-source text-to-speech project that has evolved into the OpenAudio series of advanced TTS models. The repository hosts the code and tooling for training, fine-tuning, and serving high-quality TTS, while the current flagship models (OpenAudio-S1 and S1-mini) are distributed via Fish Audio’s playground and Hugging Face. The models are evaluated with Seed TTS metrics and achieve exceptionally low word and character error rates, indicating strong...
    Downloads: 5 This Week
    Last Update:
    See Project
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • 5
    MARS5

    MARS5

    MARS5 speech model (TTS) from CAMB.AI

    MARS5-TTS is CAMB.AI’s open-source English speech model designed for high-quality text-to-speech and voice emulation. It uses a two-stage architecture that combines an autoregressive (AR) model with a non-autoregressive (NAR) model, giving it both expressiveness and speed. The model is built to handle prosodically challenging content such as sports commentary, anime dialogue, and other high-energy or highly varied speech patterns with realistic rhythm and intonation. To control speaker...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 6
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    Ring is a reasoning Mixture-of-Experts (MoE) large language model (LLM) developed by inclusionAI. It is built from or derived from Ling. Its design emphasizes reasoning, efficiency, and modular expert activation. In its “flash” variant (Ring-flash-2.0), it optimizes inference by activating only a subset of experts. It applies reinforcement learning/reasoning optimization techniques. Its architectures and training approaches are tuned to enable efficient and capable reasoning performance....
    Downloads: 3 This Week
    Last Update:
    See Project
  • 7
    Agent S2

    Agent S2

    Agent S: an open agentic framework that uses computers like a human

    Simular's Agent S2 represents a leap forward in the development of computer-use agents, capable of autonomously interacting with a range of devices and interfaces. By integrating specialized AI models, Agent S2 delivers state-of-the-art performance, whether on desktop systems or smartphones. Through modular architecture, it efficiently handles complex tasks, such as navigating UIs, performing low-level actions like text selection, and executing high-level strategies like planning....
    Downloads: 3 This Week
    Last Update:
    See Project
  • 8
    MetaGPT

    MetaGPT

    The Multi-Agent Framework

    The Multi-Agent Framework: Given one line Requirement, return PRD, Design, Tasks, Repo. Assign different roles to GPTs to form a collaborative software entity for complex tasks. MetaGPT takes a one-line requirement as input and outputs user stories / competitive analysis/requirements/data structures / APIs / documents, etc. Internally, MetaGPT includes product managers/architects/project managers/engineers. It provides the entire process of a software company along with carefully orchestrated SOPs.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 9
    LlamaIndex

    LlamaIndex

    Central interface to connect your LLM's with external data

    LlamaIndex (GPT Index) is a project that provides a central interface to connect your LLM's with external data. LlamaIndex is a simple, flexible interface between your external data and LLMs. It provides the following tools in an easy-to-use fashion. Provides indices over your unstructured and structured data for use with LLM's. These indices help to abstract away common boilerplate and pain points for in-context learning. Dealing with prompt limitations (e.g. 4096 tokens for Davinci) when...
    Downloads: 3 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    DocTR

    DocTR

    Library for OCR-related tasks powered by Deep Learning

    DocTR provides an easy and powerful way to extract valuable information from your documents. Seemlessly process documents for Natural Language Understanding tasks: we provide OCR predictors to parse textual information (localize and identify each word) from your documents. Robust 2-stage (detection + recognition) OCR predictors with pretrained parameters. User-friendly, 3 lines of code to load a document and extract text with a predictor. State-of-the-art performances on public document...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    YYeTsBot

    YYeTsBot

    Renren Film and Television bot, fully connected to Renren resources

    Renren Film and Television bot, fully connected to all Renren Film and television resources without deletion of resources. The database of this site is permanently open source and free. You can directly send the name of the episode you want to watch, and you can choose to share the webpage or link (ed2k and magnet links). When searching for resources, it will be searched according to my predetermined priority (everyone video offline, subtitle man), of course, you can also use commands to...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 12
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 13
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. It is easy to customize or extend. Users can find their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    dm_control

    dm_control

    DeepMind's software stack for physics-based simulation

    DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo. DeepMind's software stack for physics-based simulation and Reinforcement Learning environments, using MuJoCo physics. The MuJoCo Python bindings support three different OpenGL rendering backends: EGL (headless, hardware-accelerated), GLFW (windowed, hardware-accelerated), and OSMesa (purely software-based). At least one of these three backends must be available in order render...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    Minigrid

    Minigrid

    Simple and easily configurable grid world environments

    Minigrid is a lightweight, minimalistic grid-world environment library for reinforcement learning (RL) research. It provides a suite of simple 2D grid-based tasks (e.g., navigating mazes, unlocking doors, carrying keys) where an agent moves in discrete steps and interacts with objects. The design emphasizes speed (agents can run thousands of steps per second), low dependency overhead, and high customizability — making it easy to define new maps, new tasks, or wrappers. It supports the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    llm.c

    llm.c

    LLM training in simple, raw C/CUDA

    llm.c is a minimalist, systems-level implementation of a small transformer-based language model in C that prioritizes clarity and educational value. By stripping away heavy frameworks, it exposes the core math and memory flows of embeddings, attention, and feed-forward layers. The code illustrates how to wire forward passes, losses, and simple training or inference loops with direct control over arrays and buffers. Its compact design makes it easy to trace execution, profile hotspots, and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    UltraRAG

    UltraRAG

    Less Code, Lower Barrier, Faster Deployment

    UltraRAG 2.0 is a low-code, MCP-enabled RAG framework that aims to lower the barrier to building complex retrieval pipelines for research and production. It provides end-to-end recipes—from encoding and indexing corpora to deploying retrievers and LLMs—so users can reproduce baselines and iterate rapidly. The toolkit comes with built-in support for popular RAG datasets, large corpora, and canonical baselines, plus documentation that walks from “quick start” to debugging and case analysis. It...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    CodeGeeX4

    CodeGeeX4

    CodeGeeX4-ALL-9B, a versatile model for all AI software development

    CodeGeeX4 is the fourth-generation open source multilingual code large language model (LLM) developed by ZhipuAI. Designed as a powerful AI coding assistant, it supports over 100 programming languages and has been trained on a massive code and natural language corpus. Compared to its predecessors, CodeGeeX4 introduces improved reasoning, stronger alignment with developer needs, and better performance on real-world programming benchmarks. It supports tasks such as code completion, generation...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    DeepSeek VL

    DeepSeek VL

    Towards Real-World Vision-Language Understanding

    DeepSeek-VL is DeepSeek’s initial vision-language model that anchors their multimodal stack. It enables understanding and generation across visual and textual modalities—meaning it can process an image + a prompt, answer questions about images, caption, classify, or reason about visuals in context. The model is likely used internally as the visual encoder backbone for agent use cases, to ground perception in downstream tasks (e.g. answering questions about a screenshot). The repository...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    Phi-3-MLX

    Phi-3-MLX

    Phi-3.5 for Mac: Locally-run Vision and Language Models

    Phi-3-Vision-MLX is an Apple MLX (machine learning on Apple silicon) implementation of Phi-3 Vision, a lightweight multi-modal model designed for vision and language tasks. It focuses on running vision-language AI efficiently on Apple hardware like M1 and M2 chips.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 22
    SGLang

    SGLang

    SGLang is a fast serving framework for large language models

    SGLang is a fast serving framework for large language models and vision language models. It makes your interaction with models faster and more controllable by co-designing the backend runtime and frontend language.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Open Autonomy

    Open Autonomy

    A framework for the creation of autonomous agent services

    Open Autonomy is a framework that enables the development of autonomous economic agents (AEAs) capable of operating independently in various economic contexts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    Langroid

    Langroid

    Harness LLMs with Multi-Agent Programming

    Given the remarkable abilities of recent Large Language Models (LLMs), there is an unprecedented opportunity to build intelligent applications powered by this transformative technology. The top question for any enterprise is: how best to harness the power of LLMs for complex applications? For technical and practical reasons, building LLM-powered applications is not as simple as throwing a task at an LLM system and expecting it to do it. Effectively leveraging LLMs at scale requires a...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    spacy-llm

    spacy-llm

    Integrating LLMs into structured NLP pipelines

    Large Language Models (LLMs) feature powerful natural language understanding capabilities. With only a few (and sometimes no) examples, an LLM can be prompted to perform custom NLP tasks such as text categorization, named entity recognition, coreference resolution, information extraction and more. This package integrates Large Language Models (LLMs) into spaCy, featuring a modular system for fast prototyping and prompting, and turning unstructured responses into robust outputs for various...
    Downloads: 1 This Week
    Last Update:
    See Project