Showing 1840 open source projects for "artificial intelligence algorithm"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    FastAgency

    FastAgency

    The fastest way to bring multi-agent workflows to production

    FastAgency is a framework that simplifies the creation and deployment of AI-driven automation agents. It provides a structured environment for developing AI assistants capable of handling various business and technical tasks.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    TrustGraph

    TrustGraph

    Deploy reasoning AI agents powered by agentic graph RAG in minutes

    TrustGraph is an AI-driven framework designed to assess and visualize trust relationships within networks, aiding in the analysis of trustworthiness and influence among entities.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Parlant

    Parlant

    The behavior guidance framework for customer-facing LLM agents

    Parlant is a lightweight speech-to-text and text-to-speech framework designed for real-time AI-driven voice applications.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    Letta

    Letta

    Letta (formerly MemGPT) is a framework for creating LLM services

    Letta is an AI-powered task automation framework designed to handle workflow automation, natural language commands, and AI-driven decision-making.
    Downloads: 1 This Week
    Last Update:
    See Project
  • No-Nonsense Code-to-Cloud Security for Devs | Aikido Icon
    No-Nonsense Code-to-Cloud Security for Devs | Aikido

    Connect your GitHub, GitLab, Bitbucket, or Azure DevOps account to start scanning your repos for free.

    Aikido provides a unified security platform for developers, combining 12 powerful scans like SAST, DAST, and CSPM. AI-driven AutoFix and AutoTriage streamline vulnerability management, while runtime protection blocks attacks.
    Start for Free
  • 5
    GPT All Star

    GPT All Star

    AI-powered code generation tool for scratch development of web apps

    AI-powered code generation tool for scratch development of web applications with a team collaboration of autonomous AI agents. This is a research project, and its primary value is to explore the possibility of autonomous AI agents.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    ChatArena

    ChatArena

    ChatArena (or Chat Arena) is a Multi-Agent Language Game Environments

    ChatArena is a library that provides multi-agent language game environments and facilitates research about autonomous LLM agents and their social interactions.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    magentic

    magentic

    Seamlessly integrate LLMs as Python functions

    Easily integrate Large Language Models into your Python code. Simply use the @prompt and @chatprompt decorators to create functions that return structured output from the LLM. Mix LLM queries and function calling with regular Python code to create complex logic.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Axolotl

    Axolotl

    Go ahead and axolotl questions

    Axolotl is a powerful and flexible framework for fine-tuning large language models on custom datasets. Built for researchers and developers, Axolotl simplifies the process of adapting LLMs for specific tasks, including chat, code generation, and instruction following. It supports a wide variety of model architectures and offers out-of-the-box optimization strategies for efficient training.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    kotaemon

    kotaemon

    An open-source RAG-based tool for chatting with your documents

    An open-source clean & customizable RAG UI for chatting with your documents. Built with both end users and developers in mind. This project serves as a functional RAG UI for both end users who want to do QA on their documents and developers who want to build their own RAG pipeline.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Build Securely on AWS with Proven Frameworks Icon
    Build Securely on AWS with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 10
    Prompt flow

    Prompt flow

    Build high-quality LLM apps

    Prompt flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 11
    exo

    exo

    Run your own AI cluster at home with everyday devices

    Run your own AI cluster at home with everyday devices. Maintained by exo labs. Forget expensive NVIDIA GPUs, unify your existing devices into one powerful GPU, iPhone, iPad, Android, Mac, Linux, or pretty much any device. Now the default models, run 8B, 70B, and 405B parameter models on your own devices.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 12
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    AlphaFold 3

    AlphaFold 3

    AlphaFold 3 inference pipeline

    AlphaFold 3, developed by Google DeepMind, is an advanced deep learning system for predicting biomolecular structures and interactions with exceptional accuracy. This repository provides the complete inference pipeline for running AlphaFold 3, though access to the model parameters is restricted and must be obtained directly from Google under specific terms of use. The system is designed for scientific research applications in structural biology, biochemistry, and bioinformatics, enabling...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    ArXiv MCP Server

    ArXiv MCP Server

    A Model Context Protocol server for searching and analyzing arXiv

    arxiv-mcp-server bridges AI assistants and the arXiv repository through a clean MCP interface, enabling search, metadata retrieval, and content access without bespoke scraping. With simple tools like “search” and “fetch,” an agent can find papers, pull abstracts, and download PDFs for downstream summarization or analysis. The project includes packaging and CI to publish to PyPI, plus tests and linting for reliability. Issue threads show feature requests such as extracting embedded LaTeX and...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    MobileCLIP

    MobileCLIP

    Implementation of "MobileCLIP" CVPR 2024

    MobileCLIP is a family of efficient image-text embedding models designed for real-time, on-device retrieval and zero-shot classification. The repo provides training, inference, and evaluation code for MobileCLIP models trained on DataCompDR, and for newer MobileCLIP2 models trained on DFNDR. It includes an iOS demo app and Core ML artifacts to showcase practical, offline photo search and classification on iPhone-class hardware. Project notes highlight latency/accuracy trade-offs, with...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    4M

    4M

    4M: Massively Multimodal Masked Modeling

    4M is a training framework for “any-to-any” vision foundation models that uses tokenization and masking to scale across many modalities and tasks. The same model family can classify, segment, detect, caption, and even generate images, with a single interface for both discriminative and generative use. The repository releases code and models for multiple variants (e.g., 4M-7 and 4M-21), emphasizing transfer to unseen tasks and modalities. Training/inference configs and issues discuss things...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    MGIE

    MGIE

    Guiding Instruction-based Image Editing via Multimodal Large Language

    MGIE—Guiding Instruction-based Image Editing—demonstrates how a multimodal LLM can parse natural-language editing instructions and then drive image transformations accordingly. The project focuses on making edits explainable and controllable: the model interprets text guidance, reasons over image content, and outputs edits aligned with user intent. It’s positioned as an ICLR 2024 Spotlight work, with code and references that show how to connect language planning to concrete image operations....
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    Depth Pro

    Depth Pro

    Sharp Monocular Metric Depth in Less Than a Second

    Depth Pro is a foundation model for zero-shot metric monocular depth estimation, producing sharp, high-frequency depth maps with absolute scale from a single image. Unlike many prior approaches, it does not require camera intrinsics or extra metadata, yet still outputs metric depth suitable for downstream 3D tasks. Apple highlights both accuracy and speed: the model can synthesize a ~2.25-megapixel depth map in around 0.3 seconds on a standard GPU, enabling near real-time applications. The...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 19
    FastVLM

    FastVLM

    This repository contains the official implementation of FastVLM

    FastVLM is an efficiency-focused vision-language modeling stack that introduces FastViTHD, a hybrid vision encoder engineered to emit fewer visual tokens and slash encoding time, especially for high-resolution images. Instead of elaborate pruning stages, the design trades off resolution and token count through input scaling, simplifying the pipeline while maintaining strong accuracy. Reported results highlight dramatic speedups in time-to-first-token and competitive quality versus...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 20
    ML Ferret

    ML Ferret

    Refer and Ground Anything Anywhere at Any Granularity

    Ferret is Apple’s end-to-end multimodal large language model designed specifically for flexible referring and grounding: it can understand references of any granularity (boxes, points, free-form regions) and then ground open-vocabulary descriptions back onto the image. The core idea is a hybrid region representation that mixes discrete coordinates with continuous visual features, so the model can fluidly handle “any-form” referring while maintaining precise spatial localization. The repo...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 21
    CutLER

    CutLER

    Code release for Cut and Learn for Unsupervised Object Detection

    CutLER is an approach for unsupervised object detection and instance segmentation that trains detectors without human-annotated labels, and the repo also includes VideoCutLER for unsupervised video instance segmentation. The method follows a “Cut-and-LEaRn” recipe: bootstrap object proposals, refine them iteratively, and train detection/segmentation heads to discover objects across diverse datasets. The codebase provides training and inference scripts, model configs, and references to...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 22
    Mesh R-CNN

    Mesh R-CNN

    code for Mesh R-CNN, ICCV 2019

    Mesh R-CNN is a 3D reconstruction and object understanding framework developed by Facebook Research that extends Mask R-CNN into the 3D domain. Built on top of Detectron2 and PyTorch3D, Mesh R-CNN enables end-to-end 3D mesh prediction directly from single RGB images. The model learns to detect, segment, and reconstruct detailed 3D mesh representations of objects in natural images, bridging the gap between 2D perception and 3D understanding. Unlike voxel-based or point-based approaches, Mesh...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 23
    Fast3R

    Fast3R

    Fast3R: Towards 3D Reconstruction of 1000+ Images in One Forward Pass

    Fast3R is Meta AI’s official CVPR 2025 release for “Towards 3D Reconstruction of 1000+ Images in One Forward Pass.” It represents a next-generation feedforward 3D reconstruction model capable of producing dense point clouds and camera poses for hundreds to thousands of images or video frames in a single inference pass—eliminating the need for slow, iterative structure-from-motion pipelines. Built on PyTorch Lightning and extending concepts from DUSt3R and Spann3r, Fast3R unifies multi-view...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    VGGSfM

    VGGSfM

    VGGSfM: Visual Geometry Grounded Deep Structure From Motion

    VGGSfM is an advanced structure-from-motion (SfM) framework jointly developed by Meta AI Research (GenAI) and the University of Oxford’s Visual Geometry Group (VGG). It reconstructs 3D geometry, dense depth, and camera poses directly from unordered or sequential images and videos. The system combines learned feature matching and geometric optimization to generate high-quality camera calibrations, sparse/dense point clouds, and depth maps in standard COLMAP format. Version 2.0 adds support...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 25
    Coconut

    Coconut

    Training Large Language Model to Reason in a Continuous Latent Space

    Coconut is the official PyTorch implementation of the research paper “Training Large Language Models to Reason in a Continuous Latent Space.” The framework introduces a novel method for enhancing large language models (LLMs) with continuous latent reasoning steps, enabling them to generate and refine reasoning chains within a learned latent space rather than relying solely on discrete symbolic reasoning. It supports training across multiple reasoning paradigms—including standard...
    Downloads: 2 This Week
    Last Update:
    See Project
Want the latest updates on software, tech news, and AI?
Get latest updates about software, tech news, and AI from SourceForge directly in your inbox once a month.