Showing 122 open source projects for "learn python source codes"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Cloud-based help desk software with ServoDesk Icon
    Cloud-based help desk software with ServoDesk

    Full access to Enterprise features. No credit card required.

    What if You Could Automate 90% of Your Repetitive Tasks in Under 30 Days? At ServoDesk, we help businesses like yours automate operations with AI, allowing you to cut service times in half and increase productivity by 25% - without hiring more staff.
    Try ServoDesk for free
  • 1
    Darts

    Darts

    A python library for easy manipulation and forecasting of time series

    darts is a Python library for easy manipulation and forecasting of time series. It contains a variety of models, from classics such as ARIMA to deep neural networks. The models can all be used in the same way, using fit() and predict() functions, similar to scikit-learn. The library also makes it easy to backtest models, combine the predictions of several models, and take external data into account. Darts supports both univariate and multivariate time series and models. The ML-based models...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 2
    Generative AI for Beginners (Version 3)

    Generative AI for Beginners (Version 3)

    21 Lessons, Get Started Building with Generative AI

    Generative AI for Beginners is a 21-lesson course by Microsoft Cloud Advocates that teaches the fundamentals of building generative AI applications in a practical, project-oriented way. Lessons are split into “Learn” modules for core concepts and “Build” modules with hands-on code in Python and TypeScript, so you can jump in at any point that matches your goals. The course covers everything from model selection, prompt engineering, and chat/text/image app patterns to secure development practices and UX for AI. It also walks through modern application techniques such as function calling, RAG with vector databases, working with open source models, agents, fine-tuning, and using SLMs. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 3
    AtomAI

    AtomAI

    Deep and Machine Learning for Microscopy

    AtomAI is a Pytorch-based package for deep and machine-learning analysis of microscopy data that doesn't require any advanced knowledge of Python or machine learning. The intended audience is domain scientists with a basic understanding of how to use NumPy and Matplotlib. It was developed by Maxim Ziatdinov at Oak Ridge National Lab. The purpose of the AtomAI is to provide an environment that bridges the instrument-specific libraries and general physical analysis by enabling the seamless...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Plugins Quickstart

    Plugins Quickstart

    Get a ChatGPT plugin up and running in under 5 minutes

    plugins-quickstart is a starter project created by OpenAI to help developers build and deploy ChatGPT plugins quickly. It provides a minimal but complete example of how to structure a plugin, implement an API, and define the necessary configuration files. The repository demonstrates how a plugin can be served, authenticated, and integrated with ChatGPT for real-world use. By including both the backend code and plugin manifest, it guides developers through the end-to-end development workflow....
    Downloads: 3 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 5
    DeepSpeed MII

    DeepSpeed MII

    MII makes low-latency and high-throughput inference possible

    MII makes low-latency and high-throughput inference possible, powered by DeepSpeed. The Deep Learning (DL) open-source community has seen tremendous growth in the last few months. Incredibly powerful text generation models such as the Bloom 176B, or image generation model such as Stable Diffusion are now available to anyone with access to a handful or even a single GPU through platforms such as Hugging Face. While open-sourcing has democratized access to AI capabilities, their application is...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 6
    mlforecast

    mlforecast

    Scalable machine learning for time series forecasting

    mlforecast is a time-series forecasting framework built around machine-learning models, designed to make forecasting both efficient and scalable. It lets you apply any regressor that follows the typical scikit-learn API, for example, gradient-boosted trees or linear models, to time-series data by automating much of the messy feature engineering and data preparation. Instead of writing custom code to build lagged features, rolling statistics, and date-based predictors, mlforecast generates...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    OSWorld

    OSWorld

    Benchmarking Multimodal Agents for Open-Ended Tasks

    OSWorld is an open-source synthetic world environment designed for embodied AI research and multi-agent learning. It provides a richly simulated 3D world where multiple agents can interact, perform tasks, and learn complex behaviors. OSWorld emphasizes multi-modal interaction, enabling agents to process visual, auditory, and symbolic data for grounded learning in a simulated world.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Taipy

    Taipy

    Turns Data and AI algorithms into production-ready web applications

    From simple pilots to production-ready web applications in no time. No more compromise on performance, customization, and scalability. Taipy enhances performance with caching control of graphical events, optimizing rendering by selectively updating graphical components only upon interaction. Effortlessly manage massive datasets with Taipy's built-in decimator for charts, intelligently reducing the number of data points to save time and memory without losing the essence of your data's shape....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    imodelsX

    imodelsX

    Interpretable prompting and models for NLP

    Interpretable prompting and models for NLP (using large language models). Generates a prompt that explains patterns in data (Official) Explain the difference between two distributions. Find a natural-language prompt using input-gradients. Fit a better linear model using an LLM to extract embeddings. Fit better decision trees using an LLM to expand features. Finetune a single linear layer on top of LLM embeddings. Use these just a like a sci-kit-learn model. During training, they fit better...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 10
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    Interpretable machine learning

    Interpretable machine learning

    Book about interpretable machine learning

    This book is about interpretable machine learning. Machine learning is being built into many products and processes of our daily lives, yet decisions made by machines don't automatically come with an explanation. An explanation increases the trust in the decision and in the machine learning model. As the programmer of an algorithm you want to know whether you can trust the learned model. Did it learn generalizable features? Or are there some odd artifacts in the training data which the...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 12
    FramePack

    FramePack

    Lets make video diffusion practical

    FramePack explores compact representations for sequences of image frames, targeting tasks where many near-duplicate frames carry redundant information. The idea is to “pack” frames by detecting shared structure and storing differences efficiently, which can accelerate training or inference on video-like data. By reducing I/O and memory bandwidth, datasets become lighter to load while models still see the essential temporal variation. The repository demonstrates both packing and unpacking...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    BentoML

    BentoML

    Unified Model Serving Framework

    BentoML simplifies ML model deployment and serves your models at a production scale. Support multiple ML frameworks natively: Tensorflow, PyTorch, XGBoost, Scikit-Learn and many more! Define custom serving pipeline with pre-processing, post-processing and ensemble models. Standard .bento format for packaging code, models and dependencies for easy versioning and deployment. Integrate with any training pipeline or ML experimentation platform. Parallelize compute-intense model inference...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Flower

    Flower

    Flower: A Friendly Federated Learning Framework

    A unified approach to federated learning, analytics, and evaluation. Federate any workload, any ML framework, and any programming language. Federated learning systems vary wildly from one use case to another. Flower allows for a wide range of different configurations depending on the needs of each individual use case. Flower originated from a research project at the University of Oxford, so it was built with AI research in mind. Many components can be extended and overridden to build new...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Instructor

    Instructor

    Structured outputs for llms

    Instructor is a tool that enables developers to extract structured data from natural language using Large Language Models (LLMs). Integrating with Python's Pydantic library allows users to define desired output structures through type hints, facilitating schema validation and seamless integration with IDEs. Instructor supports various LLM providers, including OpenAI, Anthropic, Litellm, and Cohere, offering flexibility in implementation. Its customizable nature permits the definition of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Courses (Anthropic)

    Courses (Anthropic)

    Anthropic's educational courses

    Anthropic’s courses repository is a growing collection of self-paced learning materials that teach practical AI skills using Claude and the Anthropic API. It’s organized as a sequence of hands-on courses—starting with API fundamentals and prompt engineering—so learners build capability step by step rather than in isolation. Each course mixes short readings with runnable notebooks and exercises, guiding you through concepts like model parameters, streaming, multimodal prompts, structured...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    UMAP

    UMAP

    Uniform Manifold Approximation and Projection

    Uniform Manifold Approximation and Projection (UMAP) is a dimension reduction technique that can be used for visualization similarly to t-SNE, but also for general non-linear dimension reduction. It is possible to model the manifold with a fuzzy topological structure. The embedding is found by searching for a low-dimensional projection of the data that has the closest possible equivalent fuzzy topological structure. First of all UMAP is fast. It can handle large datasets and high dimensional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    DGL

    DGL

    Python package built to ease deep learning on graph

    Build your models with PyTorch, TensorFlow or Apache MXNet. Fast and memory-efficient message passing primitives for training Graph Neural Networks. Scale to giant graphs via multi-GPU acceleration and distributed training infrastructure. DGL empowers a variety of domain-specific projects including DGL-KE for learning large-scale knowledge graph embeddings, DGL-LifeSci for bioinformatics and cheminformatics, and many others. We are keen to bringing graphs closer to deep learning researchers....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Dream Textures

    Dream Textures

    Stable Diffusion built-in to Blender

    Create textures, concept art, background assets, and more with a simple text prompt. Use the 'Seamless' option to create textures that tile perfectly with no visible seam. Texture entire scenes with 'Project Dream Texture' and depth to image. Re-style animations with the Cycles render pass. Run the models on your machine to iterate without slowdowns from a service. Create textures, concept art, and more with text prompts. Learn how to use the various configuration options to get exactly what...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 22
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    Large Concept Model is a research codebase centered on concept-centric representation learning at scale, aiming to capture shared structure across many categories and modalities. It organizes training around concepts (rather than just raw labels), encouraging models to understand attributes, relations, and compositional structure that transfer across tasks. The repository provides training loops, data tooling, and evaluation routines to learn and probe these concept embeddings, typically...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    OpenAI Swarm

    OpenAI Swarm

    Educational framework exploring multi-agent orchestration

    Swarm focuses on making agent coordination and execution lightweight, highly controllable, and easily testable. It accomplishes this through two primitive abstractions; Agents and handoffs. An Agent encompasses instructions and tools, and can at any point choose to hand off a conversation to another Agent. These primitives are powerful enough to express rich dynamics between tools and networks of agents, allowing you to build scalable, real-world solutions while avoiding a steep learning...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Mem0

    Mem0

    The Memory layer for AI Agents

    Mem0 is a self-improving memory layer designed for Large Language Model (LLM) applications, enabling personalized AI experiences that save costs and delight users. It remembers user preferences, adapts to individual needs, and continuously improves over time. Key features include enhancing future conversations by building smarter AI that learns from every interaction, reducing LLM costs by up to 80% through intelligent data filtering, delivering more accurate and personalized AI outputs by...
    Downloads: 0 This Week
    Last Update:
    See Project