Showing 510 open source projects for "glew source code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    MMF

    MMF

    A modular framework for vision & language multimodal research

    MMF is a modular framework for vision and language multimodal research from Facebook AI Research. MMF contains reference implementations of state-of-the-art vision and language models and has powered multiple research projects at Facebook AI Research. MMF is designed from ground up to let you focus on what matters, your model, by providing boilerplate code for distributed training, common datasets and state-of-the-art pre-trained baselines out-of-the-box. MMF is built on top of PyTorch that...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Project Malmo

    Project Malmo

    A platform for Artificial Intelligence experimentation on Minecraft

    How can we develop artificial intelligence that learns to make sense of complex environments? That learns from others, including humans, how to interact with the world? That learns transferable skills throughout its existence, and applies them to solve new, challenging problems? Project Malmo sets out to address these core research challenges, addressing them by integrating (deep) reinforcement learning, cognitive science, and many ideas from artificial intelligence. The Malmo platform...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    captcha_break

    captcha_break

    Identification codes

    This project will use Keras to build a deep convolutional neural network to identify the captcha verification code. It is recommended to use a graphics card to run the project. The following visualization codes are jupyter notebookall done in . If you want to write a python script, you can run it normally with a little modification. Of course, you can also remove these visualization codes. captcha is a library written in python to generate verification codes. It supports image verification...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells. The first layer of the utterance-level encoder is always...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Desktop and Mobile Device Management Software Icon
    Desktop and Mobile Device Management Software

    It's a modern take on desktop management that can be scaled as per organizational needs.

    Desktop Central is a unified endpoint management (UEM) solution that helps in managing servers, laptops, desktops, smartphones, and tablets from a central location.
    Learn More
  • 5
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    We are happy to announce that our new model for synthetic data called CTGAN is open-sourced. The new model is simpler and gives better performance on many datasets. TGAN is a tabular data synthesizer. It can generate fully synthetic data from real data. Currently, TGAN can generate numerical columns and categorical columns. TGAN has been developed and runs on Python 3.5, 3.6 and 3.7. Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    MUSE is a framework for learning multilingual word embeddings that live in a shared space, enabling bilingual lexicon induction, cross-lingual retrieval, and zero-shot transfer. It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Easy-TensorFlow

    Easy-TensorFlow

    Simple and comprehensive tutorials in TensorFlow

    The goal of this repository is to provide comprehensive tutorials for TensorFlow while maintaining the simplicity of the code. Each tutorial includes a detailed explanation (written in .ipynb) format, as well as the source code (in .py format). There is a necessity to address the motivations for this project. TensorFlow is one of the deep learning frameworks available with the largest community. This repository is dedicated to suggesting a simple path to learn TensorFlow. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    DetectAndTrack

    DetectAndTrack

    The implementation of an algorithm presented in the CVPR18 paper

    DetectAndTrack is the reference implementation for the CVPR 2018 paper “Detect-and-Track: Efficient Pose Estimation in Videos,” focusing on human keypoint detection and tracking across video frames. The system combines per-frame pose detection with a tracking mechanism to maintain identities over time, enabling efficient multi-person pose estimation in video. Code and instructions are organized to replicate paper results and to serve as a starting point for researchers working on pose in...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tensorpack

    Tensorpack

    A Neural Net Training Interface on TensorFlow, with focus on speed

    Tensorpack is a neural network training interface based on TensorFlow v1. Uses TensorFlow in the efficient way with no extra overhead. On common CNNs, it runs training 1.2~5x faster than the equivalent Keras code. Your training can probably gets faster if written with Tensorpack. Scalable data-parallel multi-GPU / distributed training strategy is off-the-shelf to use. Squeeze the best data loading performance of Python with tensorpack.dataflow. Symbolic programming (e.g. tf.data) does not...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    qqbot

    qqbot

    A conversation robot base on Tencent's SmartQQ

    qqbot is a QQ robot implemented in python and based on Tencent SmartQQ protocol, which can run on Linux, Windows and Mac OSX platforms. During the startup process, the QR code picture will pop up automatically. You need to scan the code with the mobile QQ client and authorize the login. After the startup is successful, the current login information will be saved to the local file. When the next startup, you can enter: qqbot -q qq number , first try to restore the login information from the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Finetune Transformer LM

    Finetune Transformer LM

    Code for "Improving Language Understanding by Generative Pre-Training"

    finetune-transformer-lm is a research codebase that accompanies the paper “Improving Language Understanding by Generative Pre-Training,” providing a minimal implementation focused on fine-tuning a transformer language model for evaluation tasks. The repository centers on reproducing the ROCStories Cloze Test result and includes a single-command training workflow to run the experiment end to end. It documents that runs are non-deterministic due to certain GPU operations and reports a median...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 14
    SG2Im

    SG2Im

    Code for "Image Generation from Scene Graphs", Johnson et al, CVPR 201

    sg2im is a research codebase that learns to synthesize images from scene graphs—structured descriptions of objects and their relationships. Instead of conditioning on free-form text alone, it leverages graph structure to control layout and interactions, generating scenes that respect constraints like “person left of dog” or “cup on table.” The pipeline typically predicts object layouts (bounding boxes and masks) from the graph, then renders a realistic image conditioned on those layouts....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Skater

    Skater

    Python library for model interpretation/explanations

    ...Model interpretation is the ability to explain and validate the decisions of a predictive model to enable fairness, accountability, and transparency in algorithmic decision-making. The library has embraced object-oriented and functional programming paradigms as deemed necessary to provide scalability and concurrency while keeping code brevity in mind.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    LearningToCompare_FSL

    LearningToCompare_FSL

    Learning to Compare: Relation Network for Few-Shot Learning

    LearningToCompare_FSL is a PyTorch implementation of the “Learning to Compare: Relation Network for Few-Shot Learning” paper, focusing on the few-shot learning experiments described in that work. The core idea implemented here is the relation network, which learns to compare pairs of feature embeddings and output relation scores that indicate whether two images belong to the same class, enabling classification from only a handful of labeled examples. The repository provides training and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    SSD Keras

    SSD Keras

    A Keras port of single shot MultiBox detector

    This is a Keras port of the SSD model architecture introduced by Wei Liu et al. in the paper SSD: Single Shot MultiBox Detector. Ports of the trained weights of all the original models are provided below. This implementation is accurate, meaning that both the ported weights and models trained from scratch produce the same mAP values as the respective models of the original Caffe implementation. The main goal of this project is to create an SSD implementation that is well documented for those...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    stanford-tensorflow-tutorials

    stanford-tensorflow-tutorials

    This repository contains code examples for the Stanford's course

    This repository contains code examples for the course CS 20: TensorFlow for Deep Learning Research. It will be updated as the class progresses. Detailed syllabus and lecture notes can be found in the site. For this course, I use python3.6 and TensorFlow 1.4.1.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    EvalAI

    EvalAI

    Evaluating state of the art in AI

    EvalAI is an open-source platform for evaluating and comparing machine learning (ML) and artificial intelligence (AI) algorithms at scale. We allow the creation of an arbitrary number of evaluation phases and dataset splits, compatibility using any programming language, and organizing results in both public and private leaderboards. Certain large-scale challenges need special computing capabilities for evaluation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    mAP

    mAP

    Evaluates the performance of your neural net for object recognition

    In practice, a higher mAP value indicates a better performance of your neural net, given your ground truth and set of classes. The performance of your neural net will be judged using the mAP criteria defined in the PASCAL VOC 2012 competition. We simply adapted the official Matlab code into Python (in our tests they both give the same results). First, your neural net detection-results are sorted by decreasing confidence and are assigned to ground-truth objects. We have "a match" when they...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    PyTorch Book

    PyTorch Book

    PyTorch tutorials and fun projects including neural talk

    This is the corresponding code for the book "The Deep Learning Framework PyTorch: Getting Started and Practical", but it can also be used as a standalone PyTorch Getting Started Guide and Tutorial. The current version of the code is based on pytorch 1.0.1, if you want to use an older version please git checkout v0.4or git checkout v0.3. Legacy code has better python2/python3 compatibility, CPU/GPU compatibility test. The new version of the code has not been fully tested, it has been tested...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Image classification models for Keras

    Image classification models for Keras

    Keras code and weights files for popular deep learning models

    All architectures are compatible with both TensorFlow and Theano, and upon instantiation the models will be built according to the image dimension ordering set in your Keras configuration file at ~/.keras/keras.json. For instance, if you have set image_dim_ordering=tf, then any model loaded from this repository will get built according to the TensorFlow dimension ordering convention, "Width-Height-Depth". Pre-trained weights can be automatically loaded upon instantiation (weights='imagenet'...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23

    PyGOAPng

    Python Goal Oriented Action Planning (GOAP) library

    A library for implementing GOAP in an AI agent. Based on pygoap v3 by Leif Theden et al. Updated code to work without having pygame installed, bug-fixed functions to make them implement the behaviors that were expected, and implemented desired behaviors so that the Pirate demo works properly for all known actions and goals.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24

    ANGie

    Alice Next Generation (internet entity)

    An AIML based chat bot building on the original Alice AIML 1.0.1 set produced by Dr. Wallace and the ALICE AI Foundation and the PyAIML code base written by Cort Stratton, the ANGie project incorporates additional AIML sets, adds its own AIML to the set, adds new AIML tags and additional code to provide more dynamic responses and more logical case-based-reasoning. Reading through most AIML sets it seems like the authors' intention was to have a response to every input that a bot has ever...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Intel neon

    Intel neon

    Intel® Nervana™ reference deep learning framework

    neon is Intel's reference deep learning framework committed to best performance on all hardware. Designed for ease of use and extensibility. See the new features in our latest release. We want to highlight that neon v2.0.0+ has been optimized for much better performance on CPUs by enabling Intel Math Kernel Library (MKL). The DNN (Deep Neural Networks) component of MKL that is used by neon is provided free of charge and downloaded automatically as part of the neon installation. The gpu...
    Downloads: 0 This Week
    Last Update:
    See Project