Showing 534 open source projects for "code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Cloud tools for web scraping and data extraction Icon
    Cloud tools for web scraping and data extraction

    Deploy pre-built tools that crawl websites, extract structured data, and feed your applications. Reliable web data without maintaining scrapers.

    Automate web data collection with cloud tools that handle anti-bot measures, browser rendering, and data transformation out of the box. Extract content from any website, push to vector databases for RAG workflows, or pipe directly into your apps via API. Schedule runs, set up webhooks, and connect to your existing stack. Free tier available, then scale as you need to.
    Explore 10,000+ tools
  • 1
    DeepFaceLab

    DeepFaceLab

    The leading software for creating deepfakes

    ...It offers an imperative and easy-to-use pipeline that even those without a comprehensive understanding of the deep learning framework or model implementation can use; and yet also provides a flexible and loose coupling structure for those who want to strengthen their own pipeline with other features without having to write complicated boilerplate code. DeepFaceLab can achieve results with high fidelity that are indiscernible by mainstream forgery detection approaches. Apart from seamlessly swapping faces, it can also de-age faces, replace the entire head, and even manipulate speech (though this will require some skill in video editing).
    Downloads: 346 This Week
    Last Update:
    See Project
  • 2
    End-to-End Negotiator

    End-to-End Negotiator

    Deal or No Deal? End-to-End Learning for Negotiation Dialogues

    ...End-to-End Learning for Negotiation Dialogues” and “Hierarchical Text Generation and Planning for Strategic Dialogue”. It enables agents to plan, reason, and communicate effectively to maximize outcomes in multi-turn negotiations over shared resources. The framework provides code for both supervised learning (training from human dialogue data) and reinforcement learning (via self-play and rollout-based planning). It introduces a hierarchical latent model, where high-level intents are first clustered and then translated into coherent language, improving dialogue diversity and goal consistency. The repository also includes the Negotiate dataset, comprising over 5,800 dialogues across 2,200 unique scenarios.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorNets

    TensorNets

    High level network definitions with pre-trained weights in TensorFlow

    ...Readability. With recent TensorFlow APIs, more factoring and less indenting can be possible. For example, all the inception variants are implemented as about 500 lines of code in TensorNets while 2000+ lines in official TensorFlow models. Reproducibility. You can always reproduce the original results with simple APIs including feature extractions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    ChainerRL

    ChainerRL

    ChainerRL is a deep reinforcement learning library

    ChainerRL (this repository) is a deep reinforcement learning library that implements various state-of-the-art deep reinforcement algorithms in Python using Chainer, a flexible deep learning framework. PFRL is the PyTorch analog of ChainerRL. ChainerRL has a set of accompanying visualization tools in order to aid developers' ability to understand and debug their RL agents. With this visualization tool, the behavior of ChainerRL agents can be easily inspected from a browser UI. Environments...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Free and Open Source HR Software Icon
    Free and Open Source HR Software

    OrangeHRM provides a world-class HRIS experience and offers everything you and your team need to be that HR hero you know that you are.

    Give your HR team the tools they need to streamline administrative tasks, support employees, and make informed decisions with the OrangeHRM free and open source HR software.
    Learn More
  • 5
    PixelCNN

    PixelCNN

    Code for the paper "PixelCNN++: A PixelCNN Implementation..."

    PixelCNN is the official implementation from OpenAI of the autoregressive generative model described in the paper Conditional Image Generation with PixelCNN Decoders. It provides code for training and evaluating PixelCNN models on image datasets, focusing on conditional image modeling where pixels are generated sequentially based on the values of previously generated pixels. The repository demonstrates how to apply masked convolutions to enforce autoregressive dependencies and achieve tractable likelihood-based training. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    CrypTen

    CrypTen

    A framework for Privacy Preserving Machine Learning

    CrypTen is a research framework developed by Facebook Research for privacy-preserving machine learning built directly on top of PyTorch. It provides a secure and intuitive environment for performing computations on encrypted data using Secure Multiparty Computation (SMPC). Designed to make secure computation accessible to machine learning practitioners, CrypTen introduces a CrypTensor object that behaves like a regular PyTorch tensor, allowing users to seamlessly apply automatic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    textgenrnn

    textgenrnn

    Easily train your own text-generating neural network

    With textgenrnn you can easily train your own text-generating neural network of any size and complexity on any text dataset with a few lines of code. A modern neural network architecture that utilizes new techniques as attention-weighting and skip-embedding to accelerate training and improve model quality. Train on and generate text at either the character-level or word-level. Configure RNN size, the number of RNN layers, and whether to use bidirectional RNNs. Train on any generic input text file, including large files. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Spinning Up in Deep RL

    Spinning Up in Deep RL

    Educational resource to help anyone learn deep reinforcement learning

    Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that makes it easier to learn about deep reinforcement learning (deep RL). For the unfamiliar, reinforcement learning (RL) is a machine learning approach for teaching agents how to solve tasks by trial and error. Deep RL refers to the combination of RL with deep learning. At OpenAI, we believe that deep learning generally, and deep reinforcement learning specifically, will play central roles in the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    PyTracking

    PyTracking

    Visual tracking library based on PyTorch

    ...Official implementation of the RTS (ECCV 2022), ToMP (CVPR 2022), KeepTrack (ICCV 2021), LWL (ECCV 2020), KYS (ECCV 2020), PrDiMP (CVPR 2020), DiMP (ICCV 2019), and ATOM (CVPR 2019) trackers, including complete training code and trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Smart Business Texting that Generates Pipeline Icon
    Smart Business Texting that Generates Pipeline

    Create and convert pipeline at scale through industry leading SMS campaigns, automation, and conversation management.

    TextUs is the leading text messaging service provider for businesses that want to engage in real-time conversations with customers, leads, employees and candidates. Text messaging is one of the most engaging ways to communicate with customers, candidates, employees and leads. 1:1, two-way messaging encourages response and engagement. Text messages help teams get 10x the response rate over phone and email. Business text messaging has become a more viable form of communication than traditional mediums. The TextUs user experience is intentionally designed to resemble the familiar SMS inbox, allowing users to easily manage contacts, conversations, and campaigns. Work right from your desktop with the TextUs web app or use the Chrome extension alongside your ATS or CRM. Leverage the mobile app for on-the-go sending and responding.
    Learn More
  • 10
    deep-q-learning

    deep-q-learning

    Minimal Deep Q Learning (DQN & DDQN) implementations in Keras

    ...It implements the core logic needed to train an agent using Q-learning with neural networks (i.e. approximating Q-values via deep nets), setting up environment interaction loops, experience replay, network updates, and policy behavior. For learners and researchers interested in reinforcement learning, this repo offers a concrete, runnable example bridging theory and practice: you can execute the code, play with hyperparameters, observe convergence behavior, and see how deep Q-learning learns policies over time in standard environments. Because it’s self-contained and Python-based, it's well-suited for experimentation, modifications, or extension — for instance adapting to custom Gym environments, tweaking network architecture, or combining with other RL techniques.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    TensorFlow Course

    TensorFlow Course

    Simple and ready-to-use tutorials for TensorFlow

    This repository houses a highly popular (~16k stars) set of TensorFlow tutorials and example code aimed at beginners and intermediate users. It includes Jupyter notebooks and scripts that cover neural network fundamentals, model training, deployment, and more, with support for Google Colab.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    RecNN

    RecNN

    Reinforced Recommendation toolkit built around pytorch 1.7

    This is my school project. It focuses on Reinforcement Learning for personalized news recommendation. The main distinction is that it tries to solve online off-policy learning with dynamically generated item embeddings. I want to create a library with SOTA algorithms for reinforcement learning recommendation, providing the level of abstraction you like.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Dive-into-DL-TensorFlow2.0

    Dive-into-DL-TensorFlow2.0

    Dive into Deep Learning

    ...In addition, this project also refers to the project Dive-into-DL-PyTorch , which refactored PyTorch in the Chinese version of this book, and I would like to express my gratitude here. This repository mainly contains two folders, code and docs (plus some data stored in data). The code folder is the relevant jupyter notebook code for each chapter (based on TensorFlow2); the docs folder is the relevant content in the book.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    PyTorch Natural Language Processing

    PyTorch Natural Language Processing

    Basic Utilities for PyTorch Natural Language Processing (NLP)

    ...It’s open-source software, released under the BSD3 license. With your batch in hand, you can use PyTorch to develop and train your model using gradient descent. For example, check out this example code for training on the Stanford Natural Language Inference (SNLI) Corpus. Now you've setup your pipeline, you may want to ensure that some functions run deterministically. Wrap any code that's random, with fork_rng and you'll be good to go. Now that you've computed your vocabulary, you may want to make use of pre-trained word vectors to set your embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    gpt2-client

    gpt2-client

    Easy-to-use TensorFlow Wrapper for GPT-2 117M, 345M, 774M, etc.

    ...Finally, gpt2-client is a wrapper around the original gpt-2 repository that features the same functionality but with more accessiblity, comprehensibility, and utilty. You can play around with all four GPT-2 models in less than five lines of code. Install client via pip. The generation options are highly flexible. You can mix and match based on what kind of text you need generated, be it multiple chunks or one at a time with prompts.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    Torchreid

    Torchreid

    Deep learning person re-identification in PyTorch

    ...See "scripts/main.py" and "scripts/default_config.py" for more details. The folder "configs/" contains some predefined configs which you can use as a starting point. The code will automatically (download and) load the ImageNet pretrained weights. After the training is done, the model will be saved as "log/osnet_x1_0_market1501_softmax_cosinelr/model.pth.tar-250". Under the same folder, you can find the tensorboard file. Different from the same-domain setting, here we replace random_erase with color_jitter. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 17
    MatchZoo

    MatchZoo

    Facilitating the design, comparison and sharing of deep text models

    ...With the unified data processing pipeline, simplified model configuration and automatic hyper-parameters tunning features equipped, MatchZoo is flexible and easy to use. Preprocess your input data in three lines of code, keep track parameters to be passed into the model. Make use of MatchZoo customized loss functions and evaluation metrics. Initialize the model, fine-tune the hyper-parameters. Generate pair-wise training data on-the-fly, evaluate model performance using customized callbacks on validation data. MatchZoo is dependent on Keras and Tensorflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MMF

    MMF

    A modular framework for vision & language multimodal research

    ...MMF contains reference implementations of state-of-the-art vision and language models and has powered multiple research projects at Facebook AI Research. MMF is designed from ground up to let you focus on what matters, your model, by providing boilerplate code for distributed training, common datasets and state-of-the-art pre-trained baselines out-of-the-box. MMF is built on top of PyTorch that brings all of its power in your hands. MMF is not strongly opinionated. So you can use all of your PyTorch knowledge here. MMF is created to be easily extensible and composable. Through our modular design, you can use specific components from MMF that you care about. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    Project Malmo

    Project Malmo

    A platform for Artificial Intelligence experimentation on Minecraft

    ...The Malmo platform is a sophisticated AI experimentation platform built on top of Minecraft, and designed to support fundamental research in artificial intelligence. The Project Malmo platform consists of a mod for the Java version, and code that helps artificial intelligence agents sense and act within the Minecraft environment. The two components can run on Windows, Linux, or Mac OS, and researchers can program their agents in any programming language they’re comfortable with.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    captcha_break

    captcha_break

    Identification codes

    ...It supports image verification codes and voice verification codes. We use its function of generating image verification codes. First, we set our verification code format to numbers and capital letters, and generate a string of verification codes. It is well known that tensorflow occupies all video memory by default, which is not conducive to us conducting multiple experiments at the same time, so we can use the following code when tensorflow uses the video memory it needs instead of directly occupying all video memory.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CakeChat

    CakeChat

    CakeChat: Emotional Generative Dialog System

    CakeChat is a backend for chatbots that are able to express emotions via conversations. The code is flexible and allows to condition model's responses by an arbitrary categorical variable. For example, you can train your own persona-based neural conversational model or create an emotional chatting machine. Hierarchical Recurrent Encoder-Decoder (HRED) architecture for handling deep dialog context. Multilayer RNN with GRU cells.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TGAN

    TGAN

    Generative adversarial training for generating synthetic tabular data

    ...Also, although it is not strictly required, the usage of a virtualenv is highly recommended in order to avoid interfering with other software installed in the system where TGAN is run. For development, you can use make install-develop instead in order to install all the required dependencies for testing and code listing. In order to be able to sample new synthetic data, TGAN first needs to be fitted to existing data.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    MUSE

    MUSE

    A library for Multilingual Unsupervised or Supervised word Embeddings

    ...It supports both supervised alignment with seed dictionaries and unsupervised alignment that starts without parallel data by using adversarial initialization followed by Procrustes refinement. The code can align pre-trained monolingual embeddings (such as fastText) across dozens of languages and provides standardized evaluation scripts and dictionaries. By mapping languages into a common vector space, MUSE makes it straightforward to build cross-lingual applications where resources are scarce for some languages. The training and evaluation pipeline is lightweight and fast, so experimenting with different languages or initialization strategies is easy. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    automl-gs

    automl-gs

    Provide an input CSV and a target field to predict, generate a model

    Give an input CSV file and a target field you want to predict to automl-gs, and get a trained high-performing machine learning or deep learning model plus native Python code pipelines allowing you to integrate that model into any prediction workflow. No black box: you can see exactly how the data is processed, and how the model is constructed, and you can make tweaks as necessary. automl-gs is an AutoML tool which, unlike Microsoft's NNI, Uber's Ludwig, and TPOT, offers a zero code/model definition interface to getting an optimized model and data transformation pipeline in multiple popular ML/DL frameworks, with minimal Python dependencies (pandas + scikit-learn + your framework of choice). automl-gs is designed for citizen data scientists and engineers without a deep statistical background under the philosophy that you don't need to know any modern data preprocessing and machine learning engineering techniques to create a powerful prediction workflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    easy12306

    easy12306

    Automatic recognition of 12306 verification code

    Automatic recognition of 12306 verification code using machine learning algorithm. Identify never-before-seen pictures.
    Downloads: 0 This Week
    Last Update:
    See Project