Showing 423 open source projects for "sql tools python"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • eProcurement Software Icon
    eProcurement Software

    Enterprises and companies seeking a solution to manage all their procurement operations and processes

    eBuyerAssist by Eyvo is a cloud-based procurement solution designed for businesses of all sizes and industries. Fully modular and scalable, it streamlines the entire procurement lifecycle—from requisition to fulfillment. The platform includes powerful tools for strategic sourcing, supplier management, warehouse operations, and contract oversight. Additional modules cover purchase orders, approval workflows, inventory and asset management, customer orders, budget control, cost accounting, invoice matching, vendor credit checks, and risk analysis. eBuyerAssist centralizes all procurement functions into a single, easy-to-use system—improving visibility, control, and efficiency across your organization. Whether you're aiming to reduce costs, enhance compliance, or align procurement with broader business goals, eBuyerAssist helps you get there faster, smarter, and with measurable results.
    Learn More
  • 1
    DomE

    DomE

    Implements a reference architecture for creating information systems

    DomE Experiment is an implementation of a reference architecture for creating information systems from the automated evolution of the domain model. The architecture comprises elements that guarantee user access through automatically generated interfaces for various devices, integration with external information sources, data and operations security, automatic generation of analytical information, and automatic control of business processes. All these features are generated from the domain...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    VoiceSmith

    VoiceSmith

    [WIP] VoiceSmith makes training text to speech models easy

    VoiceSmith makes it possible to train and infer on both single and multispeaker models without any coding experience. It fine-tunes a pretty solid text to speech pipeline based on a modified version of DelightfulTTS and UnivNet on your dataset. Both models were pretrained on a proprietary 5000 speaker dataset. It also provides some tools for dataset preprocessing like automatic text normalization. Windows (only CPU supported currently) or any Linux based operating system. If you want to run...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    SageMaker MXNet Inference Toolkit

    SageMaker MXNet Inference Toolkit

    Toolkit for allowing inference and serving with MXNet in SageMaker

    SageMaker MXNet Inference Toolkit is an open-source library for serving MXNet models on Amazon SageMaker. This library provides default pre-processing, predict and postprocessing for certain MXNet model types and utilizes the SageMaker Inference Toolkit for starting up the model server, which is responsible for handling inference requests. AWS Deep Learning Containers (DLCs) are a set of Docker images for training and serving models in TensorFlow, TensorFlow 2, PyTorch, and MXNet. Deep...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Mask2Former

    Mask2Former

    Code release for "Masked-attention Mask Transformer

    Mask2Former is a unified segmentation architecture that handles semantic, instance, and panoptic segmentation with one model and one training recipe. Its core idea is to cast segmentation as mask classification: a transformer decoder predicts a set of mask queries, each with an associated class score, eliminating the need for task-specific heads. A pixel decoder fuses multi-scale features and feeds masked attention in the transformer so each query focuses computation on its current spatial...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Total Network Visibility for Network Engineers and IT Managers Icon
    Total Network Visibility for Network Engineers and IT Managers

    Network monitoring and troubleshooting is hard. TotalView makes it easy.

    This means every device on your network, and every interface on every device is automatically analyzed for performance, errors, QoS, and configuration.
    Learn More
  • 5
    Guild AI

    Guild AI

    Experiment tracking, ML developer tools

    Guild AI is an open-source experiment tracking toolkit designed to bring systematic control to machine learning workflows, enabling users to build better models faster. It automatically captures every detail of training runs as unique experiments, facilitating comprehensive tracking and analysis. Users can compare and analyze runs to deepen their understanding and incrementally improve models. Guild AI simplifies hyperparameter tuning by applying state-of-the-art algorithms through...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    YOLOX

    YOLOX

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5

    YOLOX is a high-performance anchor-free YOLO, exceeding yolov3~v5 with MegEngine, ONNX, TensorRT, ncnn, and OpenVINO supported. YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and industrial communities. Prepare your own dataset with images and labels first. For labeling images, you can use tools like Labelme or CVAT. One more thing worth noting is that you should also implement pull_item and load_anno method...
    Downloads: 24 This Week
    Last Update:
    See Project
  • 7
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision. The encoder processes only the visible patches, while a lightweight decoder reconstructs the...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    PromptSource

    PromptSource

    Toolkit for creating, sharing and using natural language prompts

    PromptSource is a toolkit for creating, sharing and using natural language prompts. Recent work has shown that large language models exhibit the ability to perform reasonable zero-shot generalization to new tasks. For instance, GPT-3 demonstrated that large language models have strong zero- and few-shot abilities. FLAN and T0 then demonstrated that pre-trained language models fine-tuned in a massively multitask fashion yield even stronger zero-shot performance. A common denominator in these...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Deep Daze

    Deep Daze

    Simple command line tool for text to image generation

    Simple command-line tool for text to image generation using OpenAI's CLIP and Siren (Implicit neural representation network). In true deep learning fashion, more layers will yield better results. Default is at 16, but can be increased to 32 depending on your resources. Technique first devised and shared by Mario Klingemann, it allows you to prime the generator network with a starting image, before being steered towards the text. Simply specify the path to the image you wish to use, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Turn more customers into advocates. Icon
    Turn more customers into advocates.

    Fight skyrocketing paid media costs by turning your customers into a primary vehicle for acquisition, awareness, and activation with Extole.

    The platform's advanced capabilities ensure companies get the most out of their referral programs. Leverage custom events, profiles, and attributes to enable dynamic, audience-specific referral experiences. Use first-party data to tailor customer segment messaging, rewards, and engagement strategies. Use our flexible APIs to build management capabilities and consumer experiences–headlessly or hybrid. We have all the tools you need to build scalable, secure, and high-performing referral programs.
    Learn More
  • 10
    TensorFlow Backend for ONNX

    TensorFlow Backend for ONNX

    Tensorflow Backend for ONNX

    Open Neural Network Exchange (ONNX) is an open standard format for representing machine learning models. ONNX is supported by a community of partners who have implemented it in many frameworks and tools. TensorFlow Backend for ONNX makes it possible to use ONNX models as input for TensorFlow. The ONNX model is first converted to a TensorFlow model and then delegated for execution on TensorFlow to produce the output. This is one of the two TensorFlow converter projects which serve different...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    SageMaker Scikit-Learn Extension

    SageMaker Scikit-Learn Extension

    A library of additional estimators and SageMaker tools based on scikit

    A library of additional estimators and SageMaker tools based on scikit-learn. This project contains standalone scikit-learn estimators and additional tools to support SageMaker Autopilot. Many of the additional estimators are based on existing scikit-learn estimators. SageMaker Scikit-Learn Extension is a Python module for machine learning built on top of scikit-learn. In order to use the I/O functionalies in the sagemaker_sklearn_extension.externals module, you will also need to install the mlio version 0.7 package via conda. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Interactive Deep Colorization

    Interactive Deep Colorization

    Deep learning software for colorizing black and white images

    Interactive Deep Colorization is a software project for colorizing black-and-white (grayscale) images using deep learning, allowing users to add a few hints (e.g. scribbles) and get a plausible, fully colorized output. The idea is to merge automatic colorization (via neural networks) with optional user guidance — so if the automatic model’s guess isn’t quite right, the user can nudge colors via hints to steer the result, achieving more controlled, satisfying outputs. The project includes...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    Big Sleep

    Big Sleep

    A simple command line tool for text to image generation

    A simple command line tool for text to image generation, using OpenAI's CLIP and a BigGAN. Ryan Murdock has done it again, combining OpenAI's CLIP and the generator from a BigGAN! This repository wraps up his work so it is easily accessible to anyone who owns a GPU. You will be able to have the GAN dream-up images using natural language with a one-line command in the terminal. User-made notebook with bug fixes and added features, like google drive integration. Images will be saved to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Hugging Face Transformer

    Hugging Face Transformer

    CPU/GPU inference server for Hugging Face transformer models

    Optimize and deploy in production Hugging Face Transformer models in a single command line. At Lefebvre Dalloz we run in-production semantic search engines in the legal domain, in the non-marketing language it's a re-ranker, and we based ours on Transformer. In that setup, latency is key to providing a good user experience, and relevancy inference is done online for hundreds of snippets per user query. Most tutorials on Transformer deployment in production are built over Pytorch and FastAPI....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    SLM Lab

    SLM Lab

    Modular Deep Reinforcement Learning framework in PyTorch

    SLM Lab is a modular and extensible deep reinforcement learning framework designed for research and practical applications. It provides implementations of various state-of-the-art RL algorithms and emphasizes reproducibility, scalability, and detailed experiment tracking. SLM Lab is structured around a flexible experiment management system, allowing users to define, run, and analyze RL experiments efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    MuJoCo-py

    MuJoCo-py

    mujoco-py allows using MuJoCo from Python 3

    ...It provides utilities for loading models, running simulations, and accessing simulation states in real time, along with visualization tools for rendering environments. The project also includes interactive examples showcasing collision handling, texture randomization, state resetting, and robot control. By bridging MuJoCo with Python, mujoco-py enables rapid prototyping, training, and evaluation of AI agents in physics-rich environments.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 18
    Mocking Bird

    Mocking Bird

    Clone a voice in 5 seconds to generate arbitrary speech in real-time

    MockingBird is an open-source voice cloning and real-time speech generation toolkit that lets you clone a speaker’s voice from a short audio sample (reportedly as little as 5 seconds) and then synthesize arbitrary speech in that voice. It builds on deep-learning based TTS / voice-cloning technology (in the lineage of projects such as Real-Time-Voice-Cloning), but extends it with support for Mandarin Chinese and multiple Chinese speech datasets — broadening its applicability beyond English....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19

    MITRE Annotation Toolkit

    A toolkit for managing and manipulating text annotations

    The MITRE Annotation Toolkit (MAT) is a suite of tools which can be used for automated and human tagging of annotations. Annotation is a process, used mostly by researchers in natural language processing, of enhancing documents with information about the various phrase types the documents contain. MAT supports both UI interaction and command-line interaction, and provides various levels of control over the overall annotation process. It can be customized for specific tasks (e.g.,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    VoiceFixer

    VoiceFixer

    General Speech Restoration

    VoiceFixer is a machine-learning framework for “speech restoration”: given a degraded or distorted audio recording — with noise, clipping, low sampling rate, reverberation, or other artifacts — it attempts to recover high-fidelity, clean speech. The architecture works in two stages: first an analysis stage that tries to extract “clean” intermediate features from the noisy audio (e.g. removing noise, denoising, dereverberation, upsampling), and then a neural vocoder-based synthesis stage that...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 21
    aseryla

    aseryla

    Aseryla code repositories

    This project describes a model of how the semantic human memory represents the information relevant to the objects of the world in text format. It provides a system and a GUI application capable of extracting and managing concepts and relations from English texts. https://aseryla2.sourceforge.io/
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TensorFlowTTS

    TensorFlowTTS

    Real-Time State-of-the-art Speech Synthesis for Tensorflow 2

    TensorFlowTTS is a state-of-the-art, open-source speech synthesis library built on TensorFlow 2. It offers a variety of architectures for text-to-speech, including classic and modern models such as Tacotron‑2, FastSpeech / FastSpeech2, and neural vocoders like MelGAN and Multiband‑MelGAN. Because it’s based on TensorFlow 2, it can leverage optimizations such as fake-quantization aware training and pruning — which allow models to run faster than real time and to be deployable on mobile or...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard)...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 24
    jiant

    jiant

    jiant is an nlp toolkit

    Jiant is a multitask NLP framework for fine-tuning transformer-based models on multiple natural language understanding (NLU) tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    DrQA

    DrQA

    Reading Wikipedia to Answer Open-Domain Questions

    DrQA is an open-domain question answering system that reads large text corpora—famously Wikipedia—to answer natural language questions with extractive spans. It follows a two-stage pipeline: a fast document retriever first narrows down candidate articles, and a neural machine reader then predicts the exact answer span from those passages. The retriever relies on classic IR features (like TF-IDF and n-gram statistics) to remain lightweight and scalable to millions of documents. The reader is...
    Downloads: 0 This Week
    Last Update:
    See Project