Showing 448 open source projects for "framework"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    ConvNeXt V2

    ConvNeXt V2

    Code release for ConvNeXt V2 model

    ConvNeXt V2 is an evolution of the ConvNeXt architecture that co-designs convolutional networks alongside self-supervised learning. The V2 version introduces a fully convolutional masked autoencoder (FCMAE) framework where parts of the image are masked and the network reconstructs the missing content, marrying convolutional inductive bias with powerful pretraining. A key innovation is a new Global Response Normalization (GRN) layer added to the ConvNeXt backbone, which enhances feature competition across channels. The result is a convnet that competes strongly with transformer architectures on recognition benchmarks while being efficient and hardware-friendly. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    minGPT

    minGPT

    A minimal PyTorch re-implementation of the OpenAI GPT

    ...Because the whole model is around 300 lines of code, users can follow each step—from embedding lookup, positional encodings, multi-head attention, feed-forward layers, to output heads—and thus demystify how GPT-style models work beneath the surface. It provides a practical sandbox for experimentation, letting learners tweak the architecture, dataset, or training loop without being overwhelmed by framework abstraction.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 3
    Multi-Agent Particle Envs

    Multi-Agent Particle Envs

    Code for a multi-agent particle environment used in a paper

    Multiagent Particle Environments is a lightweight framework for simulating multi-agent reinforcement learning tasks in a continuous observation space with discrete action settings. It was originally developed by OpenAI and used in the influential paper Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments. The environment provides simple particle-based worlds with simulated physics, where agents can move, communicate, and interact with each other.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    TextBox

    TextBox

    A text generation library with pre-trained language models github.com

    ...From a training perspective, we support 4 pre-training objectives and 4 efficient and robust training strategies, such as distributed data parallel and efficient generation. Compared with the previous version of TextBox, this extension mainly focuses on building a unified, flexible, and standardized framework for better supporting PLM-based text generation models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 5
    UnionML

    UnionML

    Build and deploy machine learning microservices

    Creating ML apps should be simple and frictionless. UnionML is an open-source Python framework built on top of Flyte™, unifying the complex ecosystem of ML tools into a single interface. Combine the tools that you love using a simple, standardized API so you can stop writing so much boilerplate and focus on what matters: the data and the models that learn from them. Fit the rich ecosystem of tools and frameworks into a common protocol for machine learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    d2l-zh

    d2l-zh

    Chinese-language edition of Dive into Deep Learning

    d2l‑zh is the Chinese-language edition of Dive into Deep Learning, an interactive, open‑source deep learning textbook that combines code, math, and explanatory text. It features runnable Jupyter notebooks compatible with multiple frameworks (e.g., PyTorch, MXNet, TensorFlow), comprehensive theoretical analysis, and exercises. Widely adopted in over 70 countries and used by more than 500 universities for teaching deep learning.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Karate Club

    Karate Club

    An API Oriented Open-source Python Framework for Unsupervised Learning

    Karate Club is an unsupervised machine learning extension library for NetworkX. Karate Club consists of state-of-the-art methods to do unsupervised learning on graph-structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    FedLab

    FedLab

    A flexible Federated Learning Framework based on PyTorch

    A Python-based framework for federated learning simulation, emphasizing modularity, communication efficiency, and algorithmic flexibility. Supports both server- and client-side customization for research and development purposes.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Automatic text summarizer

    Automatic text summarizer

    Module for automatic summarization of text documents and HTML pages

    Sumy is an automatic text summarization library that provides multiple algorithms for extracting key content from documents and articles. Simple library and command line utility for extracting summary from HTML pages or plain texts. The package also contains a simple evaluation framework for text summaries. Implemented summarization methods are described in the documentation. I also maintain a list of alternative implementations of the summarizers in various programming languages.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Network Management Software and Tools for Businesses and Organizations | Auvik Networks Icon
    Network Management Software and Tools for Businesses and Organizations | Auvik Networks

    Mapping, inventory, config backup, and more.

    Reduce IT headaches and save time with a proven solution for automated network discovery, documentation, and performance monitoring. Choose Auvik because you'll see value in minutes, and stay with us to improve your IT for years to come.
    Learn More
  • 10
    MMTracking

    MMTracking

    OpenMMLab Video Perception Toolbox

    ...We are the first open-source toolbox that unifies versatile video perception tasks include video object detection, multiple object tracking, single object tracking and video instance segmentation. We decompose the video perception framework into different components and one can easily construct a customized method by combining different modules. MMTracking interacts with other OpenMMLab projects. It is built upon MMDetection that we can capitalize any detector only through modifying the configs. All operations run on GPUs. The training and inference speeds are faster than or comparable to other implementations. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    AllenNLP

    AllenNLP

    An open-source NLP research library, built on PyTorch

    AllenNLP makes it easy to design and evaluate new deep learning models for nearly any NLP problem, along with the infrastructure to easily run them in the cloud or on your laptop. AllenNLP includes reference implementations of high quality models for both core NLP problems (e.g. semantic role labeling) and NLP applications (e.g. textual entailment). AllenNLP supports loading "plugins" dynamically. A plugin is just a Python package that provides custom registered classes or additional...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    BEVFormer

    BEVFormer

    Implementation of BEVFormer, a camera-only framework

    3D visual perception tasks, including 3D detection and map segmentation based on multi-camera images, are essential for autonomous driving systems. In this work, we present a new framework termed BEVFormer, which learns unified BEV representations with spatiotemporal transformers to support multiple autonomous driving perception tasks. In a nutshell, BEVFormer exploits both spatial and temporal information by interacting with spatial and temporal space through predefined grid-shaped BEV queries. To aggregate spatial information, we design spatial cross-attention that each BEV query extracts the spatial features from the regions of interest across camera views. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Chainer

    Chainer

    A flexible deep learning framework

    Chainer is a Python-based deep learning framework. It provides automatic differentiation APIs based on dynamic computational graphs as well as high-level APIs for neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series forecasting framework. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    Catalyst

    Catalyst

    Accelerated deep learning R&D

    Catalyst is a PyTorch framework for accelerated Deep Learning research and development. It allows you to write compact but full-featured Deep Learning pipelines with just a few lines of code. With Catalyst you get a full set of features including a training loop with metrics, model checkpointing and more, all without the boilerplate. Catalyst is focused on reproducibility, rapid experimentation, and codebase reuse so you can break the cycle of writing another regular train loop and make something totally new. ...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 16
    OpenPrompt

    OpenPrompt

    An Open-Source Framework for Prompt-Learning

    Prompt-learning is the latest paradigm to adapt pre-trained language models (PLMs) to downstream NLP tasks, which modifies the input text with a textual template and directly uses PLMs to conduct pre-trained tasks. OpenPrompt is a library built upon PyTorch and provides a standard, flexible and extensible framework to deploy the prompt-learning pipeline. OpenPrompt supports loading PLMs directly from huggingface transformers. In the future, we will also support PLMs implemented by other libraries. The template is one of the most important modules in prompt learning, which wraps the original input with textual or soft-encoding sequence. Use the implementations of current prompt-learning approaches.* We have implemented various of prompting methods, including templating, verbalizing and optimization strategies under a unified standard. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    TensorFlowOnSpark

    TensorFlowOnSpark

    TensorFlowOnSpark brings TensorFlow programs to Apache Spark clusters

    By combining salient features from the TensorFlow deep learning framework with Apache Spark and Apache Hadoop, TensorFlowOnSpark enables distributed deep learning on a cluster of GPU and CPU servers. It enables both distributed TensorFlow training and inferencing on Spark clusters, with a goal to minimize the amount of code changes required to run existing TensorFlow programs on a shared grid.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Apache MXNet (incubating)

    Apache MXNet (incubating)

    A flexible and efficient library for deep learning

    Apache MXNet is an open source deep learning framework designed for efficient and flexible research prototyping and production. It contains a dynamic dependency scheduler that automatically parallelizes both symbolic and imperative operations. On top of this is a graph optimization layer, overall making MXNet highly efficient yet still portable, lightweight and scalable.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    MAE (Masked Autoencoders)

    MAE (Masked Autoencoders)

    PyTorch implementation of MAE

    MAE (Masked Autoencoders) is a self-supervised learning framework for visual representation learning using masked image modeling. It trains a Vision Transformer (ViT) by randomly masking a high percentage of image patches (typically 75%) and reconstructing the missing content from the remaining visible patches. This forces the model to learn semantic structure and global context without supervision.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    EasyNLP

    EasyNLP

    EasyNLP: A Comprehensive and Easy-to-use NLP Toolkit

    ...EasyNLP integrates knowledge distillation and few-shot learning for landing large pre-trained models, together with various popular multi-modality pre-trained models. It provides a unified framework of model training, inference, and deployment for real-world applications. It has powered more than 10 BUs and more than 20 business scenarios within the Alibaba group. It is seamlessly integrated to Platform of AI (PAI) products, including PAI-DSW for development, PAI-DLC for cloud-native training, PAI-EAS for serving, and PAI-Designer for zero-code model training.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Acme

    Acme

    A library of reinforcement learning components and agents

    Acme is a framework from DeepMind for building scalable and reproducible reinforcement learning agents. It emphasizes modular components, distributed training, and ease of experimentation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    SLM Lab

    SLM Lab

    Modular Deep Reinforcement Learning framework in PyTorch

    SLM Lab is a modular and extensible deep reinforcement learning framework designed for research and practical applications. It provides implementations of various state-of-the-art RL algorithms and emphasizes reproducibility, scalability, and detailed experiment tracking. SLM Lab is structured around a flexible experiment management system, allowing users to define, run, and analyze RL experiments efficiently.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    MoCo v3

    MoCo v3

    PyTorch implementation of MoCo v3

    ...The repository supports multi-node distributed training, automatic mixed precision, and linear scaling of learning rates for large-batch regimes. It also includes scripts for self-supervised pretraining, linear classification, and fine-tuning within the DeiT framework.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    MaskFormer

    MaskFormer

    Per-Pixel Classification is Not All You Need for Semantic Segmentation

    MaskFormer is a unified framework for image segmentation developed by Facebook Research, designed to bridge the gap between semantic, instance, and panoptic segmentation within a single architecture. Unlike traditional segmentation pipelines that treat these tasks separately, MaskFormer reformulates segmentation as a mask classification problem, enabling a consistent and efficient approach across multiple segmentation domains.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    TorchGAN

    TorchGAN

    Research Framework for easy and efficient training of GANs

    ...This package provides an easy-to-use API which can be used to train popular GANs as well as develop newer variants. The core idea behind this project is to facilitate easy and rapid generative adversarial model research. TorchGAN is a Pytorch-based framework for designing and developing Generative Adversarial Networks. This framework has been designed to provide building blocks for popular GANs and also to allow customization for cutting-edge research. Using TorchGAN's modular structure allows.
    Downloads: 0 This Week
    Last Update:
    See Project