Showing 624 open source projects for "you-get"

View related business solutions
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • Most modern and flexible cloud platform for MLM companies Icon
    Most modern and flexible cloud platform for MLM companies

    ERP-class software for multi-level marketing

    For direct selling (MLM) companies, from startup to well established enterprises with millions of distributors across the world
    Learn More
  • 1
    LLMs-from-scratch

    LLMs-from-scratch

    Implement a ChatGPT-like LLM in PyTorch from scratch, step by step

    ...The focus is on readability, correctness, and experimentation, making it ideal for students and practitioners transitioning from theory to working systems. By the end, you have a grounded sense of how data pipelines, optimization, and inference interact to produce fluent text.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Pearl

    Pearl

    A Production-ready Reinforcement Learning AI Agent Library

    ...Tutorials demonstrate end-to-end workflows on OpenAI Gym tasks and contextual-bandit setups derived from tabular datasets, emphasizing reproducibility and clear baselines. Pearl’s design favors clarity and deployability: metrics, logging, and evaluation harnesses are integrated so you can monitor learning, compare agents, and catch regressions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Ring

    Ring

    Ring is a reasoning MoE LLM provided and open-sourced by InclusionAI

    ...Its architectures and training approaches are tuned to enable efficient and capable reasoning performance. Reasoning-optimized model with reinforcement learning enhancements. Efficient architecture and memory design for large-scale reasoning. If you are located in mainland China, we also provide the model on ModelScope.cn to speed up the download process.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    OmniParser

    OmniParser

    A simple screen parsing tool towards pure vision based GUI agent

    OmniParser is a comprehensive method for parsing user interface screenshots into structured elements, significantly enhancing the ability of multimodal models like GPT-4 to generate actions accurately grounded in corresponding regions of the interface. It reliably identifies interactable icons within user interfaces and understands the semantics of various elements in a screenshot, associating intended actions with the correct screen regions. To achieve this, OmniParser curates an...
    Downloads: 0 This Week
    Last Update:
    See Project
  • The Most Powerful Software Platform for EHSQ and ESG Management Icon
    The Most Powerful Software Platform for EHSQ and ESG Management

    Addresses the needs of small businesses and large global organizations with thousands of users in multiple locations.

    Choose from a complete set of software solutions across EHSQ that address all aspects of top performing Environmental, Health and Safety, and Quality management programs.
    Learn More
  • 5
    OpenCompass

    OpenCompass

    OpenCompass is an LLM evaluation platform

    Just like a compass guides us on our journey, OpenCompass will guide you through the complex landscape of evaluating large language models. With its powerful algorithms and intuitive interface, OpenCompass makes it easy to assess the quality and effectiveness of your NLP models. OpenCompass is a one-stop platform for large model evaluation, aiming to provide a fair, open, and reproducible benchmark for large model evaluation.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote optimize optimizes a pre-trained model using NNCF or POT depending on the model format. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 7
    Hivemind

    Hivemind

    Decentralized deep learning in PyTorch. Built to train models

    ...Decentralized parameter averaging: iteratively aggregate updates from multiple workers without the need to synchronize across the entire network. Train neural networks of arbitrary size: parts of their layers are distributed across the participants with the Decentralized Mixture-of-Experts. If you have succesfully trained a model or created a downstream repository with the help of our library, feel free to submit a pull request that adds your project to the list.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    ZenML

    ZenML

    Build portable, production-ready MLOps pipelines

    A simple yet powerful open-source framework that scales your MLOps stack with your needs. Set up ZenML in a matter of minutes, and start with all the tools you already use. Gradually scale up your MLOps stack by switching out components whenever your training or deployment requirements change. Keep up with the latest changes in the MLOps world and easily integrate any new developments. Define simple and clear ML workflows without wasting time on boilerplate tooling or infrastructure code. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Learn Claude Code

    Learn Claude Code

    Bash is all you need, write a claude code with only 16 line code

    Learn Claude Code is an educational repository that teaches how modern AI coding agents work by walking learners through a sequence of progressively more complex agent implementations, starting with a minimal Bash-based agent and culminating in agents with explicit planning, subagents, and skills. It emphasizes a hands-on learning path where each version (from v0 to v4) adds conceptual building blocks like the core agent loop, todo planning, task decomposition, and domain knowledge skills,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Risk Analytics - Supplier Intelligence Icon
    Dun and Bradstreet Risk Analytics - Supplier Intelligence

    Use an AI-powered solution for supply and compliance teams who want to mitigate costly supplier risks intelligently.

    Risk, procurement, and compliance teams across the globe are under pressure to deal with geopolitical and business risks. Third-party risk exposure is impacted by rapidly scaling complexity in domestic and cross-border businesses, along with complicated and diverse regulations. It is extremely important for companies to proactively manage their third-party relationships. An AI-powered solution to mitigate and monitor counterparty risks on a continuous basis, this cutting-edge platform is powered by D&B’s Data Cloud with 520M+ Global Business Records and 2B+ yearly updates for third-party risk insights. With high-risk procurement alerts and multibillion match points, D&B Risk Analytics leverages best-in-class risk data to help drive informed decisions. Perform quick and comprehensive screening, using intelligent workflows. Receive ongoing alerts of key business indicators and disruptions.
    Learn More
  • 10
    verl

    verl

    Volcano Engine Reinforcement Learning for LLMs

    ...Data pipelines treat human feedback, simulated environments, and synthetic preferences as interchangeable sources, which helps with rapid experimentation. VERL is meant for both research and production hardening: logging, checkpointing, and evaluation suites are built in so you can track learning dynamics and regressions over time.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Tracking Any Point (TAP)

    Tracking Any Point (TAP)

    DeepMind model for tracking arbitrary points across videos & robotics

    ...RoboTAP demonstrates how TAPIR-style tracks can drive real-world robot manipulation via efficient imitation, and ships with a dataset of annotated robotics videos. The repo provides JAX and PyTorch checkpoints, Colab demos, and a real-time live demo that runs on a GPU to let you select and track points interactively.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Large Concept Model

    Large Concept Model

    Language modeling in a sentence representation space

    ...It includes utilities to build concept vocabularies, map supervision signals to those vocabularies, and measure zero-shot or few-shot generalization. Probing tools help diagnose what the model knows—e.g., attribute recognition, relation understanding, or compositionality—so you can iterate on data and objectives. The design is modular, making it straightforward to swap backbones, change objectives, or integrate retrieval components.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    OpenAI Swarm

    OpenAI Swarm

    Educational framework exploring multi-agent orchestration

    ...An Agent encompasses instructions and tools, and can at any point choose to hand off a conversation to another Agent. These primitives are powerful enough to express rich dynamics between tools and networks of agents, allowing you to build scalable, real-world solutions while avoiding a steep learning curve. Approaches similar to Swarm are best suited for situations dealing with a large number of independent capabilities and instructions. Swarm runs (almost) entirely on the client and, much like the Chat Completions API, does not store state between calls.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Qwen3 Embedding

    Qwen3 Embedding

    Designed for text embedding and ranking tasks

    Qwen3-Embedding is a model series from the Qwen family designed specifically for text embedding and ranking tasks. It builds upon the Qwen3 base/dense models and offers several sizes (0.6B, 4B, 8B parameters), for both embedding and reranking, with high multilingual capability, long‐context understanding, and reasoning. It achieves state-of-the-art performance on benchmarks like MTEB (Multilingual Text Embedding Benchmark) and supports instruction-aware embedding (i.e. embedding task...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    ChatGPT Academic

    ChatGPT Academic

    ChatGPT extension for scientific research work

    ChatGPT extension for scientific research work, specially optimized academic paper polishing experience, supports custom shortcut buttons, supports custom function plug-ins, supports markdown table display, double display of Tex formulas, complete code display function, new local Python/C++/Go project tree Analysis function/Project source code self-translation ability, newly added PDF and Word document batch summary function/PDF paper full-text translation function. All buttons are dynamically generated by reading functional.py, you can add custom functions at will, and liberate the pasteboard. Support for markdown tables output by GPT. If the output contains a formula, it will be displayed in tex form and rendered form at the same time, which is convenient for copying and reading.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    ...It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated learning workloads from research and simulation to real-world production deployment.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Pytorch-toolbelt

    Pytorch-toolbelt

    PyTorch extensions for fast R&D prototyping and Kaggle farming

    ...By design, both encoder and decoder produces a list of tensors, from fine (high-resolution, indexed 0) to coarse (low-resolution) feature maps. Access to all intermediate feature maps is beneficial if you want to apply deep supervision losses on them or encoder-decoder of object detection task.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    PennyLane

    PennyLane

    A cross-platform Python library for differentiable programming

    A cross-platform Python library for differentiable programming of quantum computers. Train a quantum computer the same way as a neural network. Built-in automatic differentiation of quantum circuits, using the near-term quantum devices directly. You can combine multiple quantum devices with classical processing arbitrarily! Support for hybrid quantum and classical models, and compatible with existing machine learning libraries. Quantum circuits can be set up to interface with either NumPy, PyTorch, JAX, or TensorFlow, allowing hybrid CPU-GPU-QPU computations. The same quantum circuit model can be run on different devices. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    ...It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic management domains. Finally, you can also create your own datasets. The package interfaces well with Pytorch Lightning which allows training on CPUs, single and multiple GPUs out-of-the-box. PyTorch Geometric Temporal makes implementing Dynamic and Temporal Graph Neural Networks quite easy - see the accompanying tutorial. Head over to our documentation to find out more about installation, creation of datasets and a full list of implemented methods and available datasets.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    ...Set wandb.config once at the beginning of your script to save your hyperparameters, input settings (like dataset name or model type), and any other independent variables for your experiments. This is useful for analyzing your experiments and reproducing your work in the future. Setting configs also allows you to visualize the relationships between features of your model architecture or data pipeline and model performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    The SpeechBrain Toolkit

    The SpeechBrain Toolkit

    A PyTorch-based Speech Toolkit

    SpeechBrain is an open-source and all-in-one conversational AI toolkit. It is designed to be simple, extremely flexible, and user-friendly. Competitive or state-of-the-art performance is obtained in various domains. SpeechBrain supports state-of-the-art methods for end-to-end speech recognition, including models based on CTC, CTC+attention, transducers, transformers, and neural language models relying on recurrent neural networks and transformers. Speaker recognition is already deployed in a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    tf2onnx

    tf2onnx

    Convert TensorFlow, Keras, Tensorflow.js and Tflite models to ONNX

    ...TensorFlow has many more ops than ONNX and occasionally mapping a model to ONNX creates issues. tf2onnx will use the ONNX version installed on your system and installs the latest ONNX version if none is found. We support and test ONNX opset-13 to opset-17. opset-6 to opset-12 should work but we don't test them. If you want the graph to be generated with a specific opset, use --opset in the command line, for example --opset 13. When running under tf-2.x tf2onnx will use the tensorflow V2 controlflow.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Groq Python

    Groq Python

    The official Python Library for the Groq API

    Groq Python is the official Python SDK for the Groq REST API, giving Python developers straightforward access to Groq’s LLM, chat, audio, and other AI services. Through this library, you can call Groq’s models from Python code — for example to request chat completions, code generation, transcription, or any supported endpoint — using idiomatic Python syntax. The SDK handles authentication (via environment variable or parameter), defines proper type-safe request/response data types, and supports both synchronous and asynchronous usage patterns depending on your application needs. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Step1X-Edit

    Step1X-Edit

    A SOTA open-source image editing model

    Step1X-Edit is a state-of-the-art open-source image editing model/framework that uses a multimodal large language model (LLM) together with a diffusion-based image decoder to let users edit images simply via natural-language instructions plus a reference image. You supply an existing image and a textual command — e.g. “add a ruby pendant on the girl’s neck” or “make the background a sunset over mountains” — and the model interprets the instruction, computes a latent embedding combining the image content and user intent, then decodes a new image implementing the edit. The model targets general-purpose editing: from object addition/removal, style changes, recoloring, retouching, background replacement, to complex transformations like changing lighting, mood, or art style. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Code-Mode

    Code-Mode

    Plug-and-play library to enable agents to call MCP and UTCP tools

    Code-Mode is a plug-and-play library that lets AI agents call tools by executing TypeScript (or via a Python wrapper) instead of making many individual function calls. Its core philosophy is that language models are very good at writing code, so rather than exposing hundreds of separate tool endpoints, you give the model a single “code execution” tool that has access to your full toolkit through code. This approach can dramatically reduce the number of tool-call iterations needed in complex workflows, turning multi-step call chains into a single code execution with internal branching and loops. The repository contains both TypeScript and Python libraries, plus a code-mode-mcp component for integrating with MCP and UTCP ecosystems. ...
    Downloads: 0 This Week
    Last Update:
    See Project