Showing 592 open source projects for "source code tracking"

View related business solutions
  • Build AI Apps with Gemini 3 on Vertex AI Icon
    Build AI Apps with Gemini 3 on Vertex AI

    Access Google’s most capable multimodal models. Train, test, and deploy AI with 200+ foundation models on one platform.

    Vertex AI gives developers access to Gemini 3—Google’s most advanced reasoning and coding model—plus 200+ foundation models including Claude, Llama, and Gemma. Build generative AI apps with Vertex AI Studio, customize with fine-tuning, and deploy to production with enterprise-grade MLOps. New customers get $300 in free credits.
    Try Vertex AI Free
  • 99.99% Uptime for MySQL and PostgreSQL on Google Cloud Icon
    99.99% Uptime for MySQL and PostgreSQL on Google Cloud

    Enterprise Plus edition delivers sub-second maintenance downtime and 2x read/write performance. Built for critical apps.

    Cloud SQL Enterprise Plus gives you a 99.99% availability SLA with near-zero downtime maintenance—typically under 10 seconds. Get 2x better read/write performance, intelligent data caching, and 35 days of point-in-time recovery. Supports MySQL, PostgreSQL, and SQL Server with built-in vector search for gen AI apps. New customers get $300 in free credit.
    Try Cloud SQL Free
  • 1
    FLAML

    FLAML

    A fast library for AutoML and tuning

    FLAML is a lightweight Python library that finds accurate machine learning models automatically, efficiently and economically. It frees users from selecting learners and hyperparameters for each learner. For common machine learning tasks like classification and regression, it quickly finds quality models for user-provided data with low computational resources. It supports both classical machine learning models and deep neural networks. It is easy to customize or extend. Users can find their...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Ray

    Ray

    A unified framework for scalable computing

    Modern workloads like deep learning and hyperparameter tuning are compute-intensive and require distributed or parallel execution. Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    TensorFlow Model Garden

    TensorFlow Model Garden

    Models and examples built with TensorFlow

    The TensorFlow Model Garden is a repository with a number of different implementations of state-of-the-art (SOTA) models and modeling solutions for TensorFlow users. We aim to demonstrate the best practices for modeling so that TensorFlow users can take full advantage of TensorFlow for their research and product development. To improve the transparency and reproducibility of our models, training logs on TensorBoard.dev are also provided for models to the extent possible though not all models...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 4
    Aden Hive

    Aden Hive

    Outcome driven agent development framework that evolves

    Hive is an open-source agent development framework that helps developers build autonomous, reliable, self-improving AI agents by letting them describe goals in ordinary natural language instead of hand-coding detailed workflows. Rather than manually defining execution graphs, Hive’s coding agent generates the agent graph, connection code, and test cases based on your high-level objectives, enabling outcome-driven agent creation that fits real business processes.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Deploy Apps in Seconds with Cloud Run Icon
    Deploy Apps in Seconds with Cloud Run

    Host and run your applications without the need to manage infrastructure. Scales up from and down to zero automatically.

    Cloud Run is the fastest way to deploy containerized apps. Push your code in Go, Python, Node.js, Java, or any language and Cloud Run builds and deploys it automatically. Get fast autoscaling, pay only when your code runs, and skip the infrastructure headaches. Two million requests free per month. And new customers get $300 in free credit.
    Try Cloud Run Free
  • 5
    TorchRL

    TorchRL

    A modular, primitive-first, python-first PyTorch library

    TorchRL is an open-source Reinforcement Learning (RL) library for PyTorch. TorchRL provides PyTorch and python-first, low and high-level abstractions for RL that are intended to be efficient, modular, documented, and properly tested. The code is aimed at supporting research in RL. Most of it is written in Python in a highly modular way, such that researchers can easily swap components, transform them, or write new ones with little effort.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    ...My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I have adapted the source code of segment-geospatial from the segment-anything-eo repository, and credit for its original version goes to Aliaksandr Hancharenka.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    OpenCLIP

    OpenCLIP

    An open source implementation of CLIP

    The goal of this repository is to enable training models with contrastive image-text supervision and to investigate their properties such as robustness to distribution shift. Our starting point is an implementation of CLIP that matches the accuracy of the original CLIP models when trained on the same dataset. Specifically, a ResNet-50 model trained with our codebase on OpenAI's 15 million image subset of YFCC achieves 32.7% top-1 accuracy on ImageNet. OpenAI's CLIP model reaches 31.3% when...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    ContextGem

    ContextGem

    ContextGem: Effortless LLM extraction from documents

    ContextGem is an open-source framework designed to simplify the extraction of structured data and insights from documents using large language models (LLMs). It provides a flexible, intuitive API that minimizes boilerplate code, enabling developers to build complex extraction workflows efficiently. ContextGem supports various document formats and integrates with multiple LLM providers, making it a versatile tool for tasks like contract analysis, anomaly detection, and information retrieval.​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Elyra

    Elyra

    Elyra extends JupyterLab with an AI centric approach

    Elyra is a set of AI-centric extensions to JupyterLab Notebooks. The Elyra Getting Started Guide includes more details on these features. A version-specific summary of new features is located on the releases page.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Cut Cloud Costs with Google Compute Engine Icon
    Cut Cloud Costs with Google Compute Engine

    Save up to 91% with Spot VMs and get automatic sustained-use discounts. One free VM per month, plus $300 in credits.

    Save on compute costs with Compute Engine. Reduce your batch jobs and workload bill 60-91% with Spot VMs. Compute Engine's committed use offers customers up to 70% savings through sustained use discounts. Plus, you get one free e2-micro VM monthly and $300 credit to start.
    Try Compute Engine
  • 10
    fastai

    fastai

    Deep learning library

    fastai is a deep learning library which provides practitioners with high-level components that can quickly and easily provide state-of-the-art results in standard deep learning domains, and provides researchers with low-level components that can be mixed and matched to build new approaches. It aims to do both things without substantial compromises in ease of use, flexibility, or performance. This is possible thanks to a carefully layered architecture, which expresses common underlying...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 11
    files-to-prompt

    files-to-prompt

    Concatenate a directory full of files into a single prompt

    files-to-prompt is a Python command-line tool that takes one or more files or entire directories and concatenates their contents into a single, LLM-friendly prompt. It walks the directory tree, outputting each file preceded by its relative path and a separator, so a model can understand which content came from where. The tool is aimed at workflows where you want to ask an LLM questions about a whole codebase, documentation set, or notes folder without manually copying files together. It...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    Hugging Face Skills

    Hugging Face Skills

    Definitions for AI/ML tasks like dataset creation

    Hugging Face Skills is a repository of standardized task definitions that package instructions, scripts, and resources so coding agents can reliably perform AI and machine learning workflows. Each skill is a self-contained folder with structured metadata and guidance that tells an agent how to execute tasks such as dataset creation, model training, evaluation, or Hub operations. The project is designed to be interoperable across major agent ecosystems, including Claude Code, OpenAI Codex,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 13
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 15
    ChatGLM-6B

    ChatGLM-6B

    ChatGLM-6B: An Open Bilingual Dialogue Language Model

    ChatGLM-6B is an open bilingual (Chinese + English) conversational language model based on the GLM architecture, with approximately 6.2 billion parameters. The project provides inference code, demos (command line, web, API), quantization support for lower memory deployment, and tools for finetuning (e.g., via P-Tuning v2). It is optimized for dialogue and question answering with a balance between performance and deployability in consumer hardware settings. Support for quantized inference...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    TaskWeaver

    TaskWeaver

    A code-first agent framework for seamlessly planning analytics tasks

    TaskWeaver is a multi-agent AI framework designed for orchestrating autonomous agents that collaborate to complete complex tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 18
    GLM-4.6V

    GLM-4.6V

    GLM-4.6V/4.5V/4.1V-Thinking, towards versatile multimodal reasoning

    GLM-4.6V represents the latest generation of the GLM-V family and marks a major step forward in multimodal AI by combining advanced vision-language understanding with native “tool-call” capabilities, long-context reasoning, and strong generalization across domains. Unlike many vision-language models that treat images and text separately or require intermediate conversions, GLM-4.6V allows inputs such as images, screenshots or document pages directly as part of its reasoning pipeline — and...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 19
    LLM TLDR

    LLM TLDR

    95% token savings. 155x faster queries. 16 languages

    LLM TLDR is a tool that leverages large language models (LLMs) to generate concise, coherent summaries (TL;DRs) of long documents, articles, or text files, helping users quickly understand large amounts of content without reading every word. It integrates with LLM APIs to handle input texts of varying lengths and complexity, applying techniques like chunking, context management, and multi-pass summarization to preserve accuracy even when the source is very large. The system supports both...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    FullTClash

    FullTClash

    General proxy performance testing tool based on Clash using Telegram

    Back end part useClash project(It can also be called nowmihomo)The relevant code is used as the outing agent. The front end part uses Telegram API as the interactive interface, which needs to be used in conjunction with Telegram, that is, a Telegram robot (bot), FullTClash bot is a Telegram robot (hereinafter referred to as bot) carrying its test tasks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    MiniSom

    MiniSom

    MiniSom is a minimalistic implementation of the Self Organizing Maps

    MiniSom is a minimalistic and Numpy-based implementation of the Self Organizing Maps (SOM). SOM is a type of Artificial Neural Network able to convert complex, nonlinear statistical relationships between high-dimensional data items into simple geometric relationships on a low-dimensional display. Minisom is designed to allow researchers to easily build on top of it and to give students the ability to quickly grasp its details. The project initially aimed for a minimalistic implementation of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Shapash

    Shapash

    Explainability and Interpretability to Develop Reliable ML models

    Shapash is a Python library dedicated to the interpretability of Data Science models. It provides several types of visualization that display explicit labels that everyone can understand. Data Scientists can more easily understand their models, share their results and easily document their projects in an HTML report. End users can understand the suggestion proposed by a model using a summary of the most influential criteria.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    omegaml

    omegaml

    MLOps simplified. From ML Pipeline ⇨ Data Product without the hassle

    omega|ml is the innovative Python-native MLOps platform that provides a scalable development and runtime environment for your Data Products. Works from laptop to cloud.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    imodelsX

    imodelsX

    Interpretable prompting and models for NLP

    Interpretable prompting and models for NLP (using large language models). Generates a prompt that explains patterns in data (Official) Explain the difference between two distributions. Find a natural-language prompt using input-gradients. Fit a better linear model using an LLM to extract embeddings. Fit better decision trees using an LLM to expand features. Finetune a single linear layer on top of LLM embeddings. Use these just a like a sci-kit-learn model. During training, they fit better...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    LatentSync

    LatentSync

    Taming Stable Diffusion for Lip Sync

    LatentSync is an open-source framework from ByteDance that produces high-quality lip-synchronization for video by using an audio-conditioned latent diffusion model, bypassing traditional intermediate motion representations. In effect, given a source video (with masked or reference frames) and an audio track, LatentSync directly generates frames whose lip motions and expressions align with the audio, producing convincing talking-head or animated lip-sync output. The system leverages a U-Net...
    Downloads: 1 This Week
    Last Update:
    See Project
MongoDB Logo MongoDB