Showing 521 open source projects for "wxwidgets source code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Comet Backup - Fast, Secure Backup Software for MSPs Icon
    Comet Backup - Fast, Secure Backup Software for MSPs

    Fast, Secure Backup Software for Businesses and IT Providers

    Comet is a flexible backup platform, giving you total control over your backup environment and storage destinations.
    Learn More
  • 1
    DeepSeek MoE

    DeepSeek MoE

    Towards Ultimate Expert Specialization in Mixture-of-Experts Language

    DeepSeek-MoE (“DeepSeek MoE”) is the DeepSeek open implementation of a Mixture-of-Experts (MoE) model architecture meant to increase parameter efficiency by activating only a subset of “expert” submodules per input. The repository introduces fine-grained expert segmentation and shared expert isolation to improve specialization while controlling compute cost. For example, their MoE variant with 16.4B parameters claims comparable or better performance to standard dense models like DeepSeek 7B...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 2
    Automated Interpretability

    Automated Interpretability

    Code for Language models can explain neurons in language models paper

    The automated-interpretability repository implements tools and pipelines for automatically generating, simulating, and scoring explanations of neuron (or latent feature) behavior in neural networks. Instead of relying purely on manual, ad hoc interpretability probing, this repo aims to scale interpretability by using algorithmic methods that produce candidate explanations and assess their quality. It includes a “neuron explainer” component that, given a target neuron or latent feature,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. With only a few lines...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Top Corporate LMS for Training | Best Learning Management Software Icon
    Top Corporate LMS for Training | Best Learning Management Software

    Deliver and Track Online Training and Stay Compliant - with Axis LMS!

    Axis LMS enables you to deliver online and virtual learning and training through a scalable, easy-to-use LMS that is designed to enhance your training, automate your workflows, engage your learners and keep you compliant.
    Learn More
  • 5
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    SentenceTransformers

    SentenceTransformers

    Multilingual sentence & image embeddings with BERT

    SentenceTransformers is a Python framework for state-of-the-art sentence, text and image embeddings. The initial work is described in our paper Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks. You can use this framework to compute sentence / text embeddings for more than 100 languages. These embeddings can then be compared e.g. with cosine-similarity to find sentences with a similar meaning. This can be useful for semantic textual similar, semantic search, or paraphrase...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    TorchDistill

    TorchDistill

    A coding-free framework built on PyTorch

    torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud. Icon
    Teradata VantageCloud Enterprise is a data analytics platform for performing advanced analytics on AWS, Azure, and Google Cloud.

    Power faster innovation with Teradata VantageCloud

    VantageCloud is the complete cloud analytics and data platform, delivering harmonized data and Trusted AI for all. Built for performance, flexibility, and openness, VantageCloud enables organizations to unify diverse data sources, run complex analytics, and deploy AI models—all within a single, scalable platform.
    Learn More
  • 10
    uAgents

    uAgents

    A fast and lightweight framework for creating decentralized agents

    uAgents is a library developed by Fetch.ai that allows for creating autonomous AI agents in Python. With simple and expressive decorators, you can have an agent that performs various tasks on a schedule or takes action on various events.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    ...My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I have adapted the source code of segment-geospatial from the segment-anything-eo repository, and credit for its original version goes to Aliaksandr Hancharenka.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 14
    Red Discord Bot

    Red Discord Bot

    A multi-function Discord bot

    Red is a fully modular bot, meaning all features and commands can be enabled/disabled to your liking, making it completely customizable. This is a self-hosted bot, meaning you will need to host and maintain your own instance. You can turn Red into an admin bot, music bot, trivia bot, new best friend or all of these together! CustomCommands allows you to create simple commands for your bot without requiring you to code your own cog for Red. If the command you attempt to create shares a name...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 15
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 16
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    aisuite

    aisuite

    Simple, unified interface to multiple Generative AI providers

    Simple, unified interface to multiple Generative AI providers. aisuite makes it easy for developers to use multiple LLM through a standardized interface. Using an interface similar to OpenAI's, aisuite makes it easy to interact with the most popular LLMs and compare the results. It is a thin wrapper around Python client libraries and allows creators to seamlessly swap out and test responses from different LLM providers without changing their code. Today, the library is primarily focused on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines. You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Mosec

    Mosec

    A high-performance ML model serving framework, offers dynamic batching

    Mosec is a high-performance and flexible model-serving framework for building ML model-enabled backend and microservices. It bridges the gap between any machine learning models you just trained and the efficient online service API.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    scikit-image

    scikit-image

    Image processing in Python

    scikit-image is a collection of algorithms for image processing. It is available free of charge and free of restriction. We pride ourselves on high-quality, peer-reviewed code, written by an active community of volunteers. scikit-image builds on scipy.ndimage to provide a versatile set of image processing routines in Python. This library is developed by its community, and contributions are most welcome! Read about our mission, vision, and values and how we govern the project. Major proposals...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    MoCo (Momentum Contrast)

    MoCo (Momentum Contrast)

    Self-supervised visual learning using momentum contrast in PyTorch

    MoCo is an open source PyTorch implementation developed by Facebook AI Research (FAIR) for the papers “Momentum Contrast for Unsupervised Visual Representation Learning” (He et al., 2019) and “Improved Baselines with Momentum Contrastive Learning” (Chen et al., 2020). It introduces Momentum Contrast (MoCo), a scalable approach to self-supervised learning that enables visual representation learning without labeled data. The core idea of MoCo is to maintain a dynamic dictionary with a...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Surya

    Surya

    Implementation of the Surya Foundation Model for Heliophysics

    Surya is an open‑source, AI‑based foundation model for heliophysics developed collaboratively by NASA (via the IMPACT AI team) and IBM. Named after the Sanskrit word for “sun,” Surya is trained on nine years of high‑resolution solar imagery from NASA’s Solar Dynamics Observatory (SDO). It is designed to forecast solar phenomena—such as flares, solar wind, irradiance, and active region behavior—by predicting future solar images with a sophisticated long–short vision transformer architecture,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Swirl

    Swirl

    Swirl queries any number of data sources with APIs

    Swirl queries any number of data sources with APIs and uses spaCy and NLTK to re-rank the unified results without extracting and indexing anything! Includes zero-code configs for Apache Solr, ChatGPT, Elastic Search, OpenSearch, PostgreSQL, Google BigQuery, RequestsGet, Google PSE, NLResearch.com, Miro & more! SWIRL adapts and distributes queries to anything with a search API - search engines, databases, noSQL engines, cloud/SaaS services etc - and uses AI (Large Language Models) to re-rank...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 25
    Klavis AI

    Klavis AI

    MCP integration platforms for AI agents to use tools at any scale

    Klavis AI is a Y Combinator X25-backed open-source infrastructure platform that enables AI agents to reliably connect with external tools and services at scale through Model Context Protocol (MCP). Founded by ex-Google DeepMind and ex-Lyft engineers, Klavis provides 50+ production-ready MCP servers with enterprise OAuth support for GitHub, Slack, Gmail, Salesforce, Linear, Notion, and more. The flagship product Strata solves tool overload through progressive discovery, achieving +13% higher...
    Downloads: 1 This Week
    Last Update:
    See Project