Showing 507 open source projects for "source code"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Loan management software that makes it easy. Icon
    Loan management software that makes it easy.

    Ideal for lending professionals who are looking for a feature rich loan management system

    Bryt Software is ideal for lending professionals who are looking for a feature rich loan management system that is intuitive and easy to use. We are 100% cloud-based, software as a service. We believe in providing our customers with fair and honest pricing. Our monthly fees are based on your number of users and we have a minimal implementation charge.
    Learn More
  • 1
    DreamCraft3D

    DreamCraft3D

    Official implementation of DreamCraft3D

    DreamCraft3D is DeepSeek’s generative 3D modeling framework / model family that likely extends their earlier 3D efforts (e.g. Shap-E or Point-E style models) with more capability, control, or expression. The name suggests a “dream crafting” metaphor—users probably supply textual or image prompts and generate 3D assets (point clouds, meshes, scenes). The repository includes model code, inference scripts, sample prompts, and possibly dataset preparation pipelines. It may integrate rendering or...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    Transformer Engine

    Transformer Engine

    A library for accelerating Transformer models on NVIDIA GPUs

    Transformer Engine (TE) is a library for accelerating Transformer models on NVIDIA GPUs, including using 8-bit floating point (FP8) precision on Hopper GPUs, to provide better performance with lower memory utilization in both training and inference. TE provides a collection of highly optimized building blocks for popular Transformer architectures and an automatic mixed precision-like API that can be used seamlessly with your framework-specific code. TE also includes a framework-agnostic C++...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    Bard API

    Bard API

    The unofficial python package that returns response of Google Bard

    The Python package returns a response of Google Bard through the value of the cookie. This package is designed for application to the Python package ExceptNotifier and Co-Coder. Please note that the bardapi is not a free service, but rather a tool provided to assist developers with testing certain functionalities due to the delayed development and release of Google Bard's API. It has been designed with a lightweight structure that can easily adapt to the emergence of an official API....
    Downloads: 1 This Week
    Last Update:
    See Project
  • 4
    pyttsx3

    pyttsx3

    Offline Text To Speech synthesis for python

    pyttsx3 is an offline text-to-speech library for Python that wraps native speech engines instead of calling cloud APIs. It is designed to work entirely without an internet connection, making it suitable for local automation, kiosks, accessibility tools, and embedded applications. On Windows it uses SAPI5, on Linux it typically uses eSpeak or eSpeak-NG, and on macOS it can use NSSpeechSynthesizer or AVSpeechSynthesizer, giving it broad cross-platform compatibility. The library exposes a...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Skillfully - The future of skills based hiring Icon
    Skillfully - The future of skills based hiring

    Realistic Workplace Simulations that Show Applicant Skills in Action

    Skillfully transforms hiring through AI-powered skill simulations that show you how candidates actually perform before you hire them. Our platform helps companies cut through AI-generated resumes and rehearsed interviews by validating real capabilities in action. Through dynamic job specific simulations and skill-based assessments, companies like Bloomberg and McKinsey have cut screening time by 50% while dramatically improving hire quality.
    Learn More
  • 5
    Agentex

    Agentex

    Open source codebase for Scale Agentex

    AgentEX is an open framework from Scale for building, running, and evaluating agentic workflows, with an emphasis on reproducibility and measurable outcomes rather than ad-hoc demos. It treats an “agent” as a composition of a policy (the LLM), tools, memory, and an execution runtime so you can test the whole loop, not just prompting. The repo focuses on structured experiments: standardized tasks, canonical tool interfaces, and logs that make it possible to compare models, prompts, and tool...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 6
    InfiniteYou

    InfiniteYou

    Flexible Photo Recrafting While Preserving Your Identity

    InfiniteYou is an open-source image-generation and “identity-preserving image editing / generation” framework from ByteDance, designed to generate high-fidelity images that preserve a subject’s identity while allowing flexible editing or re-creation according to textual prompts. Using an architecture built around diffusion transformers (DiTs), InfiniteYou introduces a component called InfuseNet that injects identity features derived from reference images into the generation process — via...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 8
    Automated Interpretability

    Automated Interpretability

    Code for Language models can explain neurons in language models paper

    The automated-interpretability repository implements tools and pipelines for automatically generating, simulating, and scoring explanations of neuron (or latent feature) behavior in neural networks. Instead of relying purely on manual, ad hoc interpretability probing, this repo aims to scale interpretability by using algorithmic methods that produce candidate explanations and assess their quality. It includes a “neuron explainer” component that, given a target neuron or latent feature,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    Synthetic Data Vault (SDV)

    Synthetic Data Vault (SDV)

    Synthetic Data Generation for tabular, relational and time series data

    The Synthetic Data Vault (SDV) is a Synthetic Data Generation ecosystem of libraries that allows users to easily learn single-table, multi-table and timeseries datasets to later on generate new Synthetic Data that has the same format and statistical properties as the original dataset. Synthetic data can then be used to supplement, augment and in some cases replace real data when training Machine Learning models. Additionally, it enables the testing of Machine Learning or other data dependent...
    Downloads: 1 This Week
    Last Update:
    See Project
  • D&B Hoovers is Your Sales Accelerator Icon
    D&B Hoovers is Your Sales Accelerator

    For sales teams that want to accelerate B2B sales with better data

    Speed up sales prospecting with the rich audience targeting capabilities of D&B Hoovers so you can spend more sales time closing.
    Learn More
  • 10
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 11
    SageMaker Training Toolkit

    SageMaker Training Toolkit

    Train machine learning models within Docker containers

    Train machine learning models within a Docker container using Amazon SageMaker. Amazon SageMaker is a fully managed service for data science and machine learning (ML) workflows. You can use Amazon SageMaker to simplify the process of building, training, and deploying ML models. To train a model, you can include your training script and dependencies in a Docker container that runs your training code. A container provides an effectively isolated environment, ensuring a consistent runtime and...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 12
    Gemma in PyTorch

    Gemma in PyTorch

    The official PyTorch implementation of Google's Gemma models

    gemma_pytorch provides the official PyTorch reference for running and fine-tuning Google’s Gemma family of open models. It includes model definitions, configuration files, and loading utilities for multiple parameter scales, enabling quick evaluation and downstream adaptation. The repository demonstrates text generation pipelines, tokenizer setup, quantization paths, and adapters for low-rank or parameter-efficient fine-tuning. Example notebooks walk through instruction tuning and evaluation...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Plugins Quickstart

    Plugins Quickstart

    Get a ChatGPT plugin up and running in under 5 minutes

    plugins-quickstart is a starter project created by OpenAI to help developers build and deploy ChatGPT plugins quickly. It provides a minimal but complete example of how to structure a plugin, implement an API, and define the necessary configuration files. The repository demonstrates how a plugin can be served, authenticated, and integrated with ChatGPT for real-world use. By including both the backend code and plugin manifest, it guides developers through the end-to-end development workflow....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    TorchDistill

    TorchDistill

    A coding-free framework built on PyTorch

    torchdistill (formerly kdkit) offers various state-of-the-art knowledge distillation methods and enables you to design (new) experiments simply by editing a declarative yaml config file instead of Python code. Even when you need to extract intermediate representations in teacher/student models, you will NOT need to reimplement the models, which often change the interface of the forward, but instead specify the module path(s) in the yaml file. In addition to knowledge distillation, this...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    uAgents

    uAgents

    A fast and lightweight framework for creating decentralized agents

    uAgents is a library developed by Fetch.ai that allows for creating autonomous AI agents in Python. With simple and expressive decorators, you can have an agent that performs various tasks on a schedule or takes action on various events.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Hamilton DAGWorks

    Hamilton DAGWorks

    Helps scientists define testable, modular, self-documenting dataflow

    Hamilton is a lightweight Python library for directed acyclic graphs (DAGs) of data transformations. Your DAG is portable; it runs anywhere Python runs, whether it's a script, notebook, Airflow pipeline, FastAPI server, etc. Your DAG is expressive; Hamilton has extensive features to define and modify the execution of a DAG (e.g., data validation, experiment tracking, remote execution). To create a DAG, write regular Python functions that specify their dependencies with their parameters. As...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    segment-geospatial

    segment-geospatial

    A Python package for segmenting geospatial data with the SAM

    ...My primary objective is to simplify the process of leveraging SAM for geospatial data analysis by enabling users to achieve this with minimal coding effort. I have adapted the source code of segment-geospatial from the segment-anything-eo repository, and credit for its original version goes to Aliaksandr Hancharenka.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Claude-Flow

    Claude-Flow

    The leading agent orchestration platform for Claude

    Claude-Flow v2 Alpha is an advanced AI orchestration and automation framework designed for enterprise-grade, large-scale AI-driven development. It enables developers to coordinate multiple specialized AI agents in real time through a hive-mind architecture, combining swarm intelligence, neural reasoning, and a powerful set of 87 Modular Control Protocol (MCP) tools. The platform supports both quick swarm tasks and persistent multi-agent sessions known as hives, facilitating distributed AI...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 19
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 20
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    Jittor is a high-performance deep learning framework based on JIT compiling and meta-operators. The whole framework and meta-operators are compiled just in time. A powerful op compiler and tuner are integrated into Jittor. It allowed us to generate high-performance code specialized for your model. Jittor also contains a wealth of high-performance model libraries, including image recognition, detection, segmentation, generation, differentiable rendering, geometric learning, reinforcement...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    D4RL

    D4RL

    Collection of reference environments, offline reinforcement learning

    D4RL (Datasets for Deep Data-Driven Reinforcement Learning) is a benchmark suite focused on offline reinforcement learning — i.e., learning policies from fixed datasets rather than via online interaction with the environment. It contains standardized environments, tasks and datasets (observations, actions, rewards, terminals) aimed at enabling reproducible research in offline RL. Researchers can load a dataset for a given task (e.g., maze navigation, manipulation) and apply their algorithm...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    aisuite

    aisuite

    Simple, unified interface to multiple Generative AI providers

    Simple, unified interface to multiple Generative AI providers. aisuite makes it easy for developers to use multiple LLM through a standardized interface. Using an interface similar to OpenAI's, aisuite makes it easy to interact with the most popular LLMs and compare the results. It is a thin wrapper around Python client libraries and allows creators to seamlessly swap out and test responses from different LLM providers without changing their code. Today, the library is primarily focused on...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    Taipy

    Taipy

    Turns Data and AI algorithms into production-ready web applications

    From simple pilots to production-ready web applications in no time. No more compromise on performance, customization, and scalability. Taipy enhances performance with caching control of graphical events, optimizing rendering by selectively updating graphical components only upon interaction. Effortlessly manage massive datasets with Taipy's built-in decimator for charts, intelligently reducing the number of data points to save time and memory without losing the essence of your data's shape....
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Stable Baselines3

    Stable Baselines3

    PyTorch version of Stable Baselines

    Stable Baselines3 (SB3) is a set of reliable implementations of reinforcement learning algorithms in PyTorch. It is the next major version of Stable Baselines. You can read a detailed presentation of Stable Baselines3 in the v1.0 blog post or our JMLR paper. These algorithms will make it easier for the research community and industry to replicate, refine, and identify new ideas, and will create good baselines to build projects on top of. We expect these tools will be used as a base around...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Determined

    Determined

    Determined, deep learning training platform

    The fastest and easiest way to build deep learning models. Distributed training without changing your model code. Determined takes care of provisioning machines, networking, data loading, and fault tolerance. Build more accurate models faster with scalable hyperparameter search, seamlessly orchestrated by Determined. Use state-of-the-art algorithms and explore results with our hyperparameter search visualizations. Interpret your experiment results using the Determined UI and TensorBoard, and...
    Downloads: 0 This Week
    Last Update:
    See Project