Showing 10 open source projects for "python dashboard"

View related business solutions
  • Keep company data safe with Chrome Enterprise Icon
    Keep company data safe with Chrome Enterprise

    Protect your business with AI policies and data loss prevention in the browser

    Make AI work your way with Chrome Enterprise. Block unapproved sites and set custom data controls that align with your company's policies.
    Download Chrome
  • Enable remote access to your apps, desktops, and files on any device. Icon
    Enable remote access to your apps, desktops, and files on any device.

    Enable remote and hybrid work for your organization

    Get the most cost-efficient and scalable remote access and application delivery solution. Create secure digital workspaces that users can access with just a web browser.
    Learn More
  • 1
    OpenBB

    OpenBB

    Investment Research for Everyone, Everywhere

    Customize and speed up your analysis, bring your own data, and create instant reports to gain a competitive edge. Whether it’s a CSV file, a private endpoint, an RSS feed, or even embed an SEC filing directly. Chat with financial data using large language models. Don’t waste time reading, create summaries in seconds and ask how that impacts investments. Create your dashboard with your favorite widgets. Create charts directly from raw data in seconds. Create charts directly from raw data in...
    Downloads: 3 This Week
    Last Update:
    See Project
  • 2
    Evidently

    Evidently

    Evaluate and monitor ML models from validation to production

    Evidently is an open-source Python library for data scientists and ML engineers. It helps evaluate, test, and monitor ML models from validation to production. It works with tabular, text data and embeddings.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Omnara

    Omnara

    Talk to Your AI Agents from Anywhere

    Omnara is an open-source agent control platform that empowers developers to turn autonomous AI tools (e.g., Claude Code, Cursor, GitHub Copilot) into collaborative teammates by offering real-time dashboards, push notifications, and remote guidance across terminals, web, and mobile. Omnara transforms your AI agents (Claude Code, Codex CLI, n8n, and more) from silent workers into communicative teammates. Get real-time visibility into what your agents are doing, and respond to their questions...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    DeepSeek-V3.2-Exp

    DeepSeek-V3.2-Exp

    An experimental version of DeepSeek model

    DeepSeek-V3.2-Exp is an experimental release of the DeepSeek model family, intended as a stepping stone toward the next generation architecture. The key innovation in this version is DeepSeek Sparse Attention (DSA), a sparse attention mechanism that aims to optimize training and inference efficiency in long-context settings without degrading output quality. According to the authors, they aligned the training setup of V3.2-Exp with V3.1-Terminus so that benchmark results remain largely...
    Downloads: 33 This Week
    Last Update:
    See Project
  • AI-powered companion that automates the administrative backbone of accounting work. Icon
    AI-powered companion that automates the administrative backbone of accounting work.

    For accounting and tax firms looking for a solution to automate client onboarding and data workflows

    Soraban is the tool to get more 1040s out the door and so much more. An Intelligent Tax Workflow Solution built specifically for accounting and tax firms, designed to automate client data intake, document collection, and workflow coordination. Stop chasing clients for documents and let Soraban handle it with dynamic, customizable questionnaires that auto-remind clients via SMS, email, or voicemail. Integrated with legacy tax software, Soraban automatically enters data, applies e-signatures for IRS forms, and coordinates tax return delivery with minimal human intervention. Handling repetitive administrative duties frees professionals to focus on advisory work while improving efficiency, reducing errors, and enhancing the client experience through mobile-friendly, seamless interactions.
    Learn More
  • 5
    NVIDIA FLARE

    NVIDIA FLARE

    NVIDIA Federated Learning Application Runtime Environment

    NVIDIA Federated Learning Application Runtime Environment NVIDIA FLARE is a domain-agnostic, open-source, extensible SDK that allows researchers and data scientists to adapt existing ML/DL workflows(PyTorch, TensorFlow, Scikit-learn, XGBoost etc.) to a federated paradigm. It enables platform developers to build a secure, privacy-preserving offering for a distributed multi-party collaboration. NVIDIA FLARE is built on a componentized architecture that allows you to take federated...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Weights and Biases

    Weights and Biases

    Tool for visualizing and tracking your machine learning experiments

    Use W&B to build better models faster. Track and visualize all the pieces of your machine learning pipeline, from datasets to production models. Quickly identify model regressions. Use W&B to visualize results in real time, all in a central dashboard. Focus on the interesting ML. Spend less time manually tracking results in spreadsheets and text files. Capture dataset versions with W&B Artifacts to identify how changing data affects your resulting models. Reproduce any model, with saved...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Lightweight' GAN

    Lightweight' GAN

    Implementation of 'lightweight' GAN, proposed in ICLR 2021

    Implementation of 'lightweight' GAN proposed in ICLR 2021, in Pytorch. The main contribution of the paper is a skip-layer excitation in the generator, paired with autoencoding self-supervised learning in the discriminator. Quoting the one-line summary "converge on single gpu with few hours' training, on 1024 resolution sub-hundred images". Augmentation is essential for Lightweight GAN to work effectively in a low data setting. You can test and see how your images will be augmented before...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    langchain-prefect

    langchain-prefect

    Tools for using Langchain with Prefect

    Large Language Models (LLMs) are interesting and useful  -  building apps that use them responsibly feels like a no-brainer. Tools like Langchain make it easier to build apps using LLMs. We need to know details about how our apps work, even when we want to use tools with convenient abstractions that may obfuscate those details. Prefect is built to help data people build, run, and observe event-driven workflows wherever they want. It provides a framework for creating deployments on a whole...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    gpt-j-api

    gpt-j-api

    API for the GPT-J language mode. Including a FastAPI backend

    An API to interact with the GPT-J language model and variants! You can use and test the model in two different ways. These are the endpoints of the public API and require no authentication. Just SSH into a TPU VM. This code was tested on both the v2-8 and v3-8 variants.
    Downloads: 2 This Week
    Last Update:
    See Project
  • Estimating Software for Heavy Construction Icon
    Estimating Software for Heavy Construction

    Developed specifically for civil construction

    Built by an estimator, SharpeSoft Estimator is a fully comprehensive software that allows for a more efficient and quicker job-winning bids. Ideal for civil, utility, heavy/highway, grading, excavating, paving, and pipeline contractors, SharpeSoft Estimator offers advanced features such as Item Master, Subcontractor Comparison, Materials Comparison, Grouped Items, Trench Profiler, Haul Calculations, What-if Scenarios, Batch Reports, and more.
    Learn More
  • 10
    BerryNet

    BerryNet

    Deep learning gateway on Raspberry Pi and other edge devices

    This project turns edge devices such as Raspberry Pi into an intelligent gateway with deep learning running on it. No internet connection is required, everything is done locally on the edge device itself. Further, multiple edge devices can create a distributed AIoT network. At DT42, we believe that bringing deep learning to edge devices is the trend towards the future. It not only saves costs of data transmission and storage but also makes devices able to respond according to the events...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next