Showing 206 open source projects for "pyscripter python 2"

View related business solutions
  • Gen AI apps are built with MongoDB Atlas Icon
    Gen AI apps are built with MongoDB Atlas

    Build gen AI apps with an all-in-one modern database: MongoDB Atlas

    MongoDB Atlas provides built-in vector search and a flexible document model so developers can build, scale, and run gen AI apps without stitching together multiple databases. From LLM integration to semantic search, Atlas simplifies your AI architecture—and it’s free to get started.
    Start Free
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • 1
    GPT-2

    GPT-2

    Code for the paper Language Models are Unsupervised Multitask Learners

    This repository contains the code and model weights for GPT-2, a large-scale unsupervised language model described in the OpenAI paper “Language Models are Unsupervised Multitask Learners.” The intent is to provide a starting point for researchers and engineers to experiment with GPT-2: generate text, fine‐tune on custom datasets, explore model behavior, or study its internal phenomena. The repository includes scripts for sampling, training, downloading pre-trained models, and utilities for...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 2
    vJEPA-2

    vJEPA-2

    PyTorch code and models for VJEPA2 self-supervised learning from video

    VJEPA2 is a next-generation self-supervised learning framework for video that extends the “predict in representation space” idea from i-JEPA to the temporal domain. Instead of reconstructing pixels, it predicts the missing high-level embeddings of masked space-time regions using a context encoder and a slowly updated target encoder. This objective encourages the model to learn semantics, motion, and long-range structure without the shortcuts that pixel-level losses can invite. The...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 3
    SAM 2

    SAM 2

    The repository provides code for running inference with SAM 2

    SAM2 is a next-generation version of the Segment Anything Model (SAM), designed to improve performance, generalization, and efficiency in promptable image segmentation tasks. It retains the core promptable interface—accepting points, boxes, or masks—but incorporates architectural and training enhancements to produce higher-fidelity masks, better boundary adherence, and robustness to complex scenes. The updated model is optimized for faster inference and lower memory use, enabling real-time...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    Wan2.2

    Wan2.2

    Wan2.2: Open and Advanced Large-Scale Video Generative Model

    Wan2.2 is a major upgrade to the Wan series of open and advanced large-scale video generative models, incorporating cutting-edge innovations to boost video generation quality and efficiency. It introduces a Mixture-of-Experts (MoE) architecture that splits the denoising process across specialized expert models, increasing total model capacity without raising computational costs. Wan2.2 integrates meticulously curated cinematic aesthetic data, enabling precise control over lighting,...
    Downloads: 149 This Week
    Last Update:
    See Project
  • Build Securely on Azure with Proven Frameworks Icon
    Build Securely on Azure with Proven Frameworks

    Lay a foundation for success with Tested Reference Architectures developed by Fortinet’s experts. Learn more in this white paper.

    Moving to the cloud brings new challenges. How can you manage a larger attack surface while ensuring great network performance? Turn to Fortinet’s Tested Reference Architectures, blueprints for designing and securing cloud environments built by cybersecurity experts. Learn more and explore use cases in this white paper.
    Download Now
  • 5
    Hunyuan3D-2.1

    Hunyuan3D-2.1

    From Images to High-Fidelity 3D Assets

    Hunyuan3D-2.1 is Tencent Hunyuan’s advanced 3D asset generation system that produces high-fidelity 3D models with Physically Based Rendering (PBR) textures. It is fully open-source with released model weights, training, and inference code. It improves on prior versions by using a PBR texture pipeline (enabling realistic material effects like reflections and subsurface scattering) and allowing community fine-tuning and extension. It supports both shape generation (mesh geometry) and texture...
    Downloads: 18 This Week
    Last Update:
    See Project
  • 6
    DeepSeek-V3.2-Exp

    DeepSeek-V3.2-Exp

    An experimental version of DeepSeek model

    DeepSeek-V3.2-Exp is an experimental release of the DeepSeek model family, intended as a stepping stone toward the next generation architecture. The key innovation in this version is DeepSeek Sparse Attention (DSA), a sparse attention mechanism that aims to optimize training and inference efficiency in long-context settings without degrading output quality. According to the authors, they aligned the training setup of V3.2-Exp with V3.1-Terminus so that benchmark results remain largely...
    Downloads: 60 This Week
    Last Update:
    See Project
  • 7
    Hunyuan3D 2.0

    Hunyuan3D 2.0

    High-Resolution 3D Assets Generation with Large Scale Diffusion Models

    The Hunyuan3D-2 model, developed by Tencent, is designed for generating high-resolution 3D assets using large-scale diffusion models. This model offers advanced capabilities for creating detailed 3D models, including texture enhancements, multi-view shape generation, and rapid inference for real-time applications. It is particularly useful for industries requiring high-quality 3D content, such as gaming, film, and virtual reality. Hunyuan3D-2 supports various enhancements and is available...
    Downloads: 27 This Week
    Last Update:
    See Project
  • 8
    Python Outlier Detection

    Python Outlier Detection

    A Python toolbox for scalable outlier detection

    PyOD is a comprehensive and scalable Python toolkit for detecting outlying objects in multivariate data. This exciting yet challenging field is commonly referred as outlier detection or anomaly detection. PyOD includes more than 30 detection algorithms, from classical LOF (SIGMOD 2000) to the latest COPOD (ICDM 2020) and SUOD (MLSys 2021). Since 2017, PyOD [AZNL19] has been successfully used in numerous academic researches and commercial products [AZHC+21, AZNHL19]. PyOD has multiple neural...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 9
    GPT-2 Output Dataset

    GPT-2 Output Dataset

    Dataset of GPT-2 outputs for research in detection, biases, and more

    The GPT-2 Output Dataset is a large collection of model-generated text, released by OpenAI alongside the GPT-2 research paper to study the behaviors and limitations of large language models. It contains 250,000 samples of GPT-2 outputs, generated with different sampling strategies such as top-k truncation, to highlight the diversity and quality of model completions. The dataset also includes corresponding human-written text for comparison, enabling researchers to explore methods for...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Get the most trusted enterprise browser Icon
    Get the most trusted enterprise browser

    Advanced built-in security helps IT prevent breaches before they happen

    Defend against security incidents with Chrome Enterprise. Create customizable controls, manage extensions and set proactive alerts to keep your data and employees protected without slowing down productivity.
    Download Chrome
  • 10
    Chinese-LLaMA-Alpaca 2

    Chinese-LLaMA-Alpaca 2

    Chinese LLaMA-2 & Alpaca-2 Large Model Phase II Project

    This project is developed based on the commercially available large model Llama-2 released by Meta. It is the second phase of the Chinese LLaMA&Alpaca large model project. The Chinese LLaMA-2 base model and the Alpaca-2 instruction fine-tuning large model are open-sourced. These models expand and optimize the Chinese vocabulary on the basis of the original Llama-2, use large-scale Chinese data for incremental pre-training, and further improve the basic semantics and command understanding of...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Qwen-2.5-VL

    Qwen-2.5-VL

    Qwen2.5-VL is the multimodal large language model series

    Qwen2.5 is a series of large language models developed by the Qwen team at Alibaba Cloud, designed to enhance natural language understanding and generation across multiple languages. The models are available in various sizes, including 0.5B, 1.5B, 3B, 7B, 14B, 32B, and 72B parameters, catering to diverse computational requirements. Trained on a comprehensive dataset of up to 18 trillion tokens, Qwen2.5 models exhibit significant improvements in instruction following, long-text generation...
    Downloads: 4 This Week
    Last Update:
    See Project
  • 12
    DALL-E 2 - Pytorch

    DALL-E 2 - Pytorch

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis

    Implementation of DALL-E 2, OpenAI's updated text-to-image synthesis neural network, in Pytorch. The main novelty seems to be an extra layer of indirection with the prior network (whether it is an autoregressive transformer or a diffusion network), which predicts an image embedding based on the text embedding from CLIP. Specifically, this repository will only build out the diffusion prior network, as it is the best performing variant (but which incidentally involves a causal transformer as...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 13
    LLaMA Efficient Tuning

    LLaMA Efficient Tuning

    Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon

    Easy-to-use LLM fine-tuning framework (LLaMA-2, BLOOM, Falcon, Baichuan, Qwen, ChatGLM2)
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    gpt-oss

    gpt-oss

    gpt-oss-120b and gpt-oss-20b are two open-weight language models

    gpt-oss is OpenAI’s open-weight family of large language models designed for powerful reasoning, agentic workflows, and versatile developer use cases. The series includes two main models: gpt-oss-120b, a 117-billion parameter model optimized for general-purpose, high-reasoning tasks that can run on a single H100 GPU, and gpt-oss-20b, a lighter 21-billion parameter model ideal for low-latency or specialized applications on smaller hardware. Both models use a native MXFP4 quantization for efficient memory use and support OpenAI’s Harmony response format, enabling transparent full chain-of-thought reasoning and advanced tool integrations such as function calling, browsing, and Python code execution. ...
    Downloads: 9 This Week
    Last Update:
    See Project
  • 15
    fastai

    fastai

    Deep learning library

    ...This is possible thanks to a carefully layered architecture, which expresses common underlying patterns of many deep learning and data processing techniques in terms of decoupled abstractions. These abstractions can be expressed concisely and clearly by leveraging the dynamism of the underlying Python language and the flexibility of the PyTorch library. fastai is organized around two main design goals: to be approachable and rapidly productive, while also being deeply hackable and configurable. It is built on top of a hierarchy of lower-level APIs which provide composable building blocks.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 16
    openTSNE

    openTSNE

    Extensible, parallel implementations of t-SNE

    openTSNE is a modular Python implementation of t-Distributed Stochasitc Neighbor Embedding (t-SNE) [1], a popular dimensionality-reduction algorithm for visualizing high-dimensional data sets. openTSNE incorporates the latest improvements to the t-SNE algorithm, including the ability to add new data points to existing embeddings [2], massive speed improvements [3] [4] [5], enabling t-SNE to scale to millions of data points, and various tricks to improve the global alignment of the resulting visualizations.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 17
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    DoWhy is a Python library for causal inference that supports explicit modeling and testing of causal assumptions. DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 18
    Kitten TTS

    Kitten TTS

    State-of-the-art TTS model under 25MB

    KittenTTS is an open-source, ultra-lightweight, and high-quality text-to-speech model featuring just 15 million parameters and a binary size under 25 MB. It is designed for real-time CPU-based deployment across diverse platforms. Ultra-lightweight, model size less than 25MB. CPU-optimized, runs without GPU on any device. High-quality voices, several premium voice options available. Fast inference, optimized for real-time speech synthesis.
    Downloads: 8 This Week
    Last Update:
    See Project
  • 19
    OpenLLM

    OpenLLM

    Operating LLMs in production

    ...With OpenLLM, you can run inference with any open-source large-language models, deploy to the cloud or on-premises, and build powerful AI apps. Built-in supports a wide range of open-source LLMs and model runtime, including Llama 2, StableLM, Falcon, Dolly, Flan-T5, ChatGLM, StarCoder, and more. Serve LLMs over RESTful API or gRPC with one command, query via WebUI, CLI, our Python/Javascript client, or any HTTP client.
    Downloads: 6 This Week
    Last Update:
    See Project
  • 20
    Phenaki - Pytorch

    Phenaki - Pytorch

    Implementation of Phenaki Video, which uses Mask GIT

    Implementation of Phenaki Video, which uses Mask GIT to produce text-guided videos of up to 2 minutes in length, in Pytorch. It will also combine another technique involving a token critic for potentially even better generations. A new paper suggests that instead of relying on the predicted probabilities of each token as a measure of confidence, one can train an extra critic to decide what to iteratively mask during sampling. This repository will also endeavor to allow the researcher to...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 21
    MLJAR Studio

    MLJAR Studio

    Python package for AutoML on Tabular Data with Feature Engineering

    We are working on new way for visual programming. We developed a desktop application called MLJAR Studio. It is a notebook-based development environment with interactive code recipes and a managed Python environment. All running locally on your machine. We are waiting for your feedback. The mljar-supervised is an Automated Machine Learning Python package that works with tabular data. It is designed to save time for a data scientist. It abstracts the common way to preprocess the data,...
    Downloads: 6 This Week
    Last Update:
    See Project
  • 22
    llama2.c

    llama2.c

    Inference Llama 2 in one file of pure C

    llama2.c is a minimalist implementation of the Llama 2 language model architecture designed to run entirely in pure C. Created by Andrej Karpathy, this project offers an educational and lightweight framework for performing inference on small Llama 2 models without external dependencies. It provides a full training and inference pipeline: models can be trained in PyTorch and later executed using a concise 700-line C program (run.c). While it can technically load Meta’s official Llama 2...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 23
    Arcade AI

    Arcade AI

    Arcade Tool Development Kit (TDK), Worker, Evals, and CLI

    Arcade AI Platform is a developer-oriented toolkit for building, deploying, and managing tools tailored to AI agents, structured as modular Python packages for flexibility and extensibility. Core platform functionality and schemas. This repository contains the core Arcade libraries, organized as separate packages for maximum flexibility and modularity. Evaluation framework for testing tool performance. Test your MCP server's tools, resources, prompts, elicitation, and OAuth 2. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 24
    GLM-4.5

    GLM-4.5

    GLM-4.5: Open-source LLM for intelligent agents by Z.ai

    GLM-4.5 is a cutting-edge open-source large language model designed by Z.ai for intelligent agent applications. The flagship GLM-4.5 model has 355 billion total parameters with 32 billion active parameters, while the compact GLM-4.5-Air version offers 106 billion total parameters and 12 billion active parameters. Both models unify reasoning, coding, and intelligent agent capabilities, providing two modes: a thinking mode for complex reasoning and tool usage, and a non-thinking mode for...
    Downloads: 242 This Week
    Last Update:
    See Project
  • 25
    ClearML

    ClearML

    Streamline your ML workflow

    ...It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • 4
  • 5
  • Next