Showing 70 open source projects for "network graph analysis"

View related business solutions
  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    Discourse Network Analyzer (DNA)

    Discourse Network Analyzer (DNA)

    Discourse Network Analyzer (DNA)

    The Java software Discourse Network Analyzer (DNA) is a qualitative content analysis tool with network export facilities. You import text files and annotate statements that persons or organizations make, and the program will return network matrices of actors connected by shared concepts.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    TrustGraph

    TrustGraph

    Deploy reasoning AI agents powered by agentic graph RAG in minutes

    TrustGraph is an AI-driven framework designed to assess and visualize trust relationships within networks, aiding in the analysis of trustworthiness and influence among entities.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 3
    Materials Discovery: GNoME

    Materials Discovery: GNoME

    AI discovers 520000 stable inorganic crystal structures for research

    Materials Discovery (GNoME) is a large-scale research initiative by Google DeepMind focused on applying graph neural networks to accelerate the discovery of stable inorganic crystal materials. The project centers on Graph Networks for Materials Exploration (GNoME), a message-passing neural network architecture trained on density functional theory (DFT) data to predict material stability and energy formation. Using GNoME, DeepMind identified 381,000 new stable materials, later expanding the dataset to include over 520,000 materials within 1 meV/atom of the convex hull as of August 2024. ...
    Downloads: 7 This Week
    Last Update:
    See Project
  • 4
    PyG

    PyG

    Graph Neural Network Library for PyTorch

    PyG (PyTorch Geometric) is a library built upon PyTorch to easily write and train Graph Neural Networks (GNNs) for a wide range of applications related to structured data. It consists of various methods for deep learning on graphs and other irregular structures, also known as geometric deep learning, from a variety of published papers. In addition, it consists of easy-to-use mini-batch loaders for operating on many small and single giant graphs, multi GPU-support, DataPipe support,...
    Downloads: 1 This Week
    Last Update:
    See Project
  • Atera all-in-one platform IT management software with AI agents Icon
    Atera all-in-one platform IT management software with AI agents

    Ideal for internal IT departments or managed service providers (MSPs)

    Atera’s AI agents don’t just assist, they act. From detection to resolution, they handle incidents and requests instantly, taking your IT management from automated to autonomous.
    Learn More
  • 5
    DoWhy

    DoWhy

    DoWhy is a Python library for causal inference

    ...DoWhy is based on a unified language for causal inference, combining causal graphical models and potential outcomes frameworks. Much like machine learning libraries have done for prediction, DoWhy is a Python library that aims to spark causal thinking and analysis. DoWhy provides a wide variety of algorithms for effect estimation, causal structure learning, diagnosis of causal structures, root cause analysis, interventions and counterfactuals. DoWhy builds on two of the most powerful frameworks for causal inference: graphical causal models and potential outcomes. For effect estimation, it uses graph-based criteria and do-calculus for modeling assumptions and identifying a non-parametric causal effect. ...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    Stanza

    Stanza

    Stanford NLP Python library for many human languages

    Stanza is a collection of accurate and efficient tools for the linguistic analysis of many human languages. Starting from raw text to syntactic analysis and entity recognition, Stanza brings state-of-the-art NLP models to languages of your choosing. Stanza is a Python natural language analysis package. It contains tools, which can be used in a pipeline, to convert a string containing human language text into lists of sentences and words, to generate base forms of those words, their parts of speech and morphological features, to give a syntactic structure dependency parse, and to recognize named entities. ...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    MCP ZoomEye

    MCP ZoomEye

    A Model Context Protocol server that provides network asset info

    The ZoomEye MCP Server is a Model Context Protocol server that provides network asset information based on query conditions, allowing Large Language Models to obtain data by querying ZoomEye using dorks and other search parameters. ​
    Downloads: 0 This Week
    Last Update:
    See Project
  • 8
    Chrome DevTools MCP

    Chrome DevTools MCP

    Chrome DevTools for coding agents

    chrome-devtools-mcp is an MCP server that connects AI agents to the Chrome DevTools Protocol so they can inspect pages, record traces, read console/network data, and modify the live browser state under user control. It makes a running Chrome instance visible to MCP clients, enabling agents to debug websites end-to-end—launching Chrome, navigating, profiling, and collecting artifacts in a structured way. The repository spells out environment requirements and cautions that exposing a live...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 9
    TEN

    TEN

    Open-source framework for conversational voice AI agents

    TEN (Transformative Extensions Network) is an open source framework designed to empower developers to build real-time multimodal AI agents capable of voice, video, text, image, and data-stream interaction with ultra-low latency. It includes a full ecosystem, TEN Turn Detection, TEN Agent, and TMAN Designer, allowing developers to rapidly assemble human-like, responsive agents that can see, speak, hear, and interact.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Grafana: The open and composable observability platform Icon
    Grafana: The open and composable observability platform

    Faster answers, predictable costs, and no lock-in built by the team helping to make observability accessible to anyone.

    Grafana is the open source analytics & monitoring solution for every database.
    Learn More
  • 10
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    FlowLens MCP Server is an open-source tool designed to give AI-powered coding agents (like Claude Code, Cursor, GitHub Copilot / Codex, and others) full, replayable browser context to dramatically improve debugging, bug reporting, and regression testing for web applications. It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    Universal Sentence Encoder

    Universal Sentence Encoder

    Encoder of greater-than-word length text trained on a variety of data

    The Universal Sentence Encoder (USE) is a pre-trained deep learning model designed to encode sentences into fixed-length embeddings for use in various natural language processing (NLP) tasks. It leverages Transformer and Deep Averaging Network (DAN) architectures to generate embeddings that capture the semantic meaning of sentences. The model is designed for tasks like sentiment analysis, semantic textual similarity, and clustering, and provides high-quality sentence representations in a computationally efficient manner.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    nodetool

    nodetool

    Visual AI Workflow Builder

    NodeTool is an open‑source, visual AI workflow builder that lets you connect nodes for text, images, audio, video, data, and automation—then run them locally or on the cloud. Build multi‑step agents, RAG systems, and creative media pipelines without coding, inspect execution in real time, and deploy anywhere: home server, private VPC, RunPod, or Cloud Run. With a local‑first design, NodeTool keeps models and data under your control while still supporting providers like OpenAI, Anthropic,...
    Downloads: 5 This Week
    Last Update:
    See Project
  • 13
    funNLP

    funNLP

    Resources, corpora, and tools for Chinese natural language processing

    FunNLP is a large, curated collection of resources, corpora, and tools for Chinese natural language processing (NLP). It aggregates datasets, lexicons, wordlists, sentiment dictionaries, knowledge graphs, and pretrained model references, serving as a one-stop resource hub for Chinese NLP practitioners. The repository is organized into categories such as sentiment analysis, text classification, named entity recognition, knowledge graphs, and various lexicons (e.g. sensitive words, emotion...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    hloc

    hloc

    Visual localization made easy with hloc

    ...It implements Hierarchical Localization, leveraging image retrieval and feature matching, and is fast, accurate, and scalable. This codebase won the indoor/outdoor localization challenges at CVPR 2020 and ECCV 2020, in combination with SuperGlue, our graph neural network for feature matching. We provide step-by-step guides to localize with Aachen, InLoc, and to generate reference poses for your own data using SfM. Just download the datasets and you're reading to go! The notebook pipeline_InLoc.ipynb shows the steps for localizing with InLoc. It's much simpler since a 3D SfM model is not needed. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    chatgpt HTML

    chatgpt HTML

    PHP version calls the OpenAI interface for question and answer

    The entire network is the most easy to deploy and responds to the fastest ChatGPT environment. The PHP version calls the OpenAI interface for question and answer, uses Stream flow mode communication, and produces while exporting. EventSource is used at the front end to support Markdown format analysis, and formula display, the code is colored. The UI on the page is concise and supports continuous conversations in the context.
    Downloads: 5 This Week
    Last Update:
    See Project
  • 17
    Karate Club

    Karate Club

    An API Oriented Open-source Python Framework for Unsupervised Learning

    Karate Club is an unsupervised machine learning extension library for NetworkX. Karate Club consists of state-of-the-art methods to do unsupervised learning on graph-structured data. To put it simply it is a Swiss Army knife for small-scale graph mining research. First, it provides network embedding techniques at the node and graph level. Second, it includes a variety of overlapping and non-overlapping community detection methods. Implemented methods cover a wide range of network science (NetSci, Complenet), data mining (ICDM, CIKM, KDD), artificial intelligence (AAAI, IJCAI) and machine learning (NeurIPS, ICML, ICLR) conferences, workshops, and pieces from prominent journals.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    CapsGNN

    CapsGNN

    A PyTorch implementation of "Capsule Graph Neural Network"

    ...Inspired by the Capsule Neural Network (CapsNet), we propose the Capsule Graph Neural Network (CapsGNN), which adopts the concept of capsules to address the weakness in existing GNN-based graph embeddings algorithms. By extracting node features in the form of capsules, routing mechanism can be utilized to capture important information at the graph level. As a result, our model generates multiple embeddings for each graph to capture graph properties from different aspects.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Minkowski Engine

    Minkowski Engine

    Auto-diff neural network library for high-dimensional sparse tensors

    The Minkowski Engine is an auto-differentiation library for sparse tensors. It supports all standard neural network layers such as convolution, pooling, unspooling, and broadcasting operations for sparse tensors. The Minkowski Engine supports various functions that can be built on a sparse tensor. We list a few popular network architectures and applications here. To run the examples, please install the package and run the command in the package root directory. Compressing a neural network to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Awesome Graph Classification

    Awesome Graph Classification

    Graph embedding, classification and representation learning papers

    A collection of graph classification methods, covering embedding, deep learning, graph kernel and factorization papers with reference implementations. Relevant graph classification benchmark datasets are available. Similar collections about community detection, classification/regression tree, fraud detection, Monte Carlo tree search, and gradient boosting papers with implementations.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    CRSLab

    CRSLab

    CRSLab is an open-source toolkit

    ...It is developed based on Python and PyTorch. CRSLab has the following highlights. Comprehensive benchmark models and datasets: We have integrated commonly-used 6 datasets and 18 models, including graph neural network and pre-training models such as R-GCN, BERT and GPT-2. We have preprocessed these datasets to support these models, and release for downloading. Extensive and standard evaluation protocols: We support a series of widely-adopted evaluation protocols for testing and comparing different CRS. General and extensible structure: We design a general and extensible structure to unify various conversational recommendation datasets and models, in which we integrate various built-in interfaces and functions for quickly development. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    TFLearn

    TFLearn

    Deep learning library featuring a higher-level API for TensorFlow

    ...Easy-to-use and understand high-level API for implementing deep neural networks, with tutorials and examples. Fast prototyping through highly modular built-in neural network layers, regularizers, optimizers, and metrics. Full transparency over Tensorflow. All functions are built over tensors and can be used independently of TFLearn. Powerful helper functions to train any TensorFlow graph, with support of multiple inputs, outputs, and optimizers. Easy and beautiful graph visualization, with details about weights, gradients, activations, and more. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    fastNLP

    fastNLP

    fastNLP: A Modularized and Extensible NLP Framework

    ...Built-in Loader and Pipe for multiple datasets, eliminating the need for preprocessing code. Various convenient NLP tools, such as Embedding loading (including ELMo and BERT), intermediate data cache, etc.. Provide a variety of neural network components and recurrence models (covering tasks such as Chinese word segmentation, named entity recognition, syntactic analysis, text classification, text matching, metaphor resolution, summarization, etc.). Trainer provides a variety of built-in Callback functions to facilitate experiment recording, exception capture, etc. Automatic download of some datasets and pre-trained models.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Euler

    Euler

    A distributed graph deep learning framework.

    ...Data in the fields of text, speech, and images is easier to process into a grid-like type of Euclidean space, which is suitable for processing by existing deep learning models. Graph is a data type in non-Euclidean space and cannot be directly applied to existing methods, requiring a specially designed graph neural network system. Graph-based learning methods such as graph neural networks combine end-to-end learning with inductive reasoning, and are expected to solve a series of problems such as relational reasoning and interpretability that deep learning cannot handle.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    StellarGraph

    StellarGraph

    Machine Learning on Graphs

    StellarGraph is a Python library for machine learning on graphs and networks. The StellarGraph library offers state-of-the-art algorithms for graph machine learning, making it easy to discover patterns and answer questions about graph-structured data. It can solve many machine learning tasks. Graph-structured data represent entities as nodes (or vertices) and relationships between them as edges (or links), and can include data associated with either as attributes. For example, a graph can contain people as nodes and friendships between them as links, with data like a person’s age and the date a friendship was established. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • 3
  • Next